
Automotive Predictive Analytics Market
Description
Automotive Predictive Analytics Market Summary
The global automotive predictive analytics market size was estimated at USD 1.77 billion in 2024, and is projected to reach USD 16.81 billion by 2033, growing at a CAGR of 29.1% from 2025 to 2033. This steady growth is attributed to the rising integration of AI and machine learning machine learning in connected vehicles, increasing demand for predictive maintenance solutions, growing adoption of telematics and usage-based insurance models, and the rapid proliferation of electric and autonomous vehicles that rely heavily on real-time data analytics for performance optimization and safety enhancements.
The integration of Vehicle-to-Everything (V2X) communication, particularly Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I), has played a pivotal role in enhancing predictive decision-making in the automotive space. The U.S. Department of Transportation’s ongoing efforts, such as its Connected Vehicle Pilot Deployment Program, have shown measurable benefits in safety and congestion reduction through real-time data sharing. Vehicles equipped with DSRC (Dedicated Short-Range Communications) or C-V2X technologies can now exchange braking, location, and speed data, enabling predictive systems to anticipate accidents and dynamically reroute traffic. This technological shift is boosting the market for predictive analytics by embedding intelligence into traffic management and in-vehicle systems, with ripple effects across public safety and commercial transport.
Government agencies are increasingly utilizing predictive analytics to maintain road safety and reduce accident risks, particularly during extreme weather. A notable example is the Aurora Pooled Fund’s 2024 CVFM (Connected Vehicle Friction Measurement) project, which collects friction data from vehicles to forecast road slipperiness. In states like Iowa and Minnesota, this data is combined with maintenance logs to optimize de-icing and snow removal operations. These developments are propelling the market growth by enabling vehicles to alert drivers of hazardous surfaces before human sensors can even detect them. This is especially valuable for autonomous and electric vehicles, where precision and preemptive responses are mission-critical.
The incorporation of crowdsourced video analytics and in-vehicle camera data is unlocking new predictive insights for infrastructure agencies and OEMs. In 2023, the Michigan Department of Transportation launched a pilot that used dashcam and external sensor data from connected vehicles to monitor pedestrian movement, traffic bottlenecks, and near-collision incidents. These insights allowed local governments to predict high-risk zones and adjust traffic signals or signage preemptively. This convergence of telematics, video feeds, and analytics is boosting the market by offering a multi-modal approach to predictive analysis, not just for vehicles, but for entire transportation ecosystems.
Public agencies are backing the implementation of machine learning and big data to simulate and predict vehicle movement in congested corridors. For instance, the U.S. DOT’s DRIVE CAVAMS program (2021-2024) used Apache Spark and real-time data from connected vehicles on I-405 in Seattle to test predictive traffic flow algorithms. These models accurately projected travel times, congestion buildup, and optimal routing decisions. This public-private collaboration is propelling the market growth by proving the viability of large-scale, AI-enabled traffic analytics, which are increasingly embedded into navigation systems and OEM infotainment platforms.
As predictive analytics systems become more data-hungry and interconnected, concerns around privacy and cybersecurity have surged. In 2024, the U.S. General Services Administration (GSA) published a comprehensive framework for managing telematics data collected from federal vehicle fleets. It recommended encryption, anonymization, and secure over-the-air update protocols for all predictive analytics platforms. Simultaneously, the Federal Trade Commission (FTC) has issued guidance on preventing misuse of vehicle geolocation and biometric data. These policy measures are boosting the market by strengthening consumer and regulatory trust in analytics platforms, especially those that rely on cloud-based predictive models and real-time behavioral data.
Global Automotive Predictive Analytics Market Report Segmentation
This report forecasts revenue growth at the global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2021 to 2033. For this study, Grand View Research has segmented the global automotive predictive analytics market report based on component, application, vehicle type, end user, and region:
The global automotive predictive analytics market size was estimated at USD 1.77 billion in 2024, and is projected to reach USD 16.81 billion by 2033, growing at a CAGR of 29.1% from 2025 to 2033. This steady growth is attributed to the rising integration of AI and machine learning machine learning in connected vehicles, increasing demand for predictive maintenance solutions, growing adoption of telematics and usage-based insurance models, and the rapid proliferation of electric and autonomous vehicles that rely heavily on real-time data analytics for performance optimization and safety enhancements.
The integration of Vehicle-to-Everything (V2X) communication, particularly Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I), has played a pivotal role in enhancing predictive decision-making in the automotive space. The U.S. Department of Transportation’s ongoing efforts, such as its Connected Vehicle Pilot Deployment Program, have shown measurable benefits in safety and congestion reduction through real-time data sharing. Vehicles equipped with DSRC (Dedicated Short-Range Communications) or C-V2X technologies can now exchange braking, location, and speed data, enabling predictive systems to anticipate accidents and dynamically reroute traffic. This technological shift is boosting the market for predictive analytics by embedding intelligence into traffic management and in-vehicle systems, with ripple effects across public safety and commercial transport.
Government agencies are increasingly utilizing predictive analytics to maintain road safety and reduce accident risks, particularly during extreme weather. A notable example is the Aurora Pooled Fund’s 2024 CVFM (Connected Vehicle Friction Measurement) project, which collects friction data from vehicles to forecast road slipperiness. In states like Iowa and Minnesota, this data is combined with maintenance logs to optimize de-icing and snow removal operations. These developments are propelling the market growth by enabling vehicles to alert drivers of hazardous surfaces before human sensors can even detect them. This is especially valuable for autonomous and electric vehicles, where precision and preemptive responses are mission-critical.
The incorporation of crowdsourced video analytics and in-vehicle camera data is unlocking new predictive insights for infrastructure agencies and OEMs. In 2023, the Michigan Department of Transportation launched a pilot that used dashcam and external sensor data from connected vehicles to monitor pedestrian movement, traffic bottlenecks, and near-collision incidents. These insights allowed local governments to predict high-risk zones and adjust traffic signals or signage preemptively. This convergence of telematics, video feeds, and analytics is boosting the market by offering a multi-modal approach to predictive analysis, not just for vehicles, but for entire transportation ecosystems.
Public agencies are backing the implementation of machine learning and big data to simulate and predict vehicle movement in congested corridors. For instance, the U.S. DOT’s DRIVE CAVAMS program (2021-2024) used Apache Spark and real-time data from connected vehicles on I-405 in Seattle to test predictive traffic flow algorithms. These models accurately projected travel times, congestion buildup, and optimal routing decisions. This public-private collaboration is propelling the market growth by proving the viability of large-scale, AI-enabled traffic analytics, which are increasingly embedded into navigation systems and OEM infotainment platforms.
As predictive analytics systems become more data-hungry and interconnected, concerns around privacy and cybersecurity have surged. In 2024, the U.S. General Services Administration (GSA) published a comprehensive framework for managing telematics data collected from federal vehicle fleets. It recommended encryption, anonymization, and secure over-the-air update protocols for all predictive analytics platforms. Simultaneously, the Federal Trade Commission (FTC) has issued guidance on preventing misuse of vehicle geolocation and biometric data. These policy measures are boosting the market by strengthening consumer and regulatory trust in analytics platforms, especially those that rely on cloud-based predictive models and real-time behavioral data.
Global Automotive Predictive Analytics Market Report Segmentation
This report forecasts revenue growth at the global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2021 to 2033. For this study, Grand View Research has segmented the global automotive predictive analytics market report based on component, application, vehicle type, end user, and region:
- Component Outlook (Revenue, USD Million, 2021 - 2033)
- Software
- Services
- Hardware
- Application Outlook (Revenue, USD Million, 2021 - 2033)
- Predictive Maintenance
- Vehicle Telematics
- Driver & Behavior Analytics
- Fleet Management
- Warranty Analytics
- Others
- Vehicle Type Outlook (Revenue, USD Million, 2021 - 2033)
- Passenger Cars
- Commercial Vehicles
- Electric Vehicles (EVs)
- End User Outlook (Revenue, USD Million, 2021 - 2033)
- OEMs (Original Equipment Manufacturers)
- Fleet Operators
- Insurance Providers
- Others
- Regional Outlook (Revenue, USD Million, 2021 - 2033)
- North America
- U.S.
- Canada
- Mexico
- Europe
- Germany
- UK
- France
- Asia Pacific
- China
- Japan
- India
- South Korea
- Australia
- Latin America
- Brazil
- Middle East and Africa (MEA)
- KSA
- UAE
- South Africa
Table of Contents
130 Pages
- Chapter 1. Methodology and Scope
- 1.1. Market Segmentation and Scope
- 1.2. Research Methodology
- 1.2.1. Information Procurement
- 1.3. Information or Data Analysis
- 1.4. Methodology
- 1.5. Research Scope and Assumptions
- 1.6. Market Formulation & Validation
- 1.7. Country Based Segment Share Calculation
- 1.8. List of Data Sources
- Chapter 2. Executive Summary
- 2.1. Market Outlook
- 2.2. Segment Outlook
- 2.3. Competitive Insights
- Chapter 3. Automotive Predictive Analytics Market Variables, Trends, & Scope
- 3.1. Market Lineage Outlook
- 3.2. Market Dynamics
- 3.2.1. Market Driver Analysis
- 3.2.2. Market Restraint Analysis
- 3.2.3. Industry Challenge
- 3.3. Automotive Predictive Analytics Market Analysis Tools
- 3.3.1. Industry Analysis - Porter’s
- 3.3.1.1. Bargaining power of the suppliers
- 3.3.1.2. Bargaining power of the buyers
- 3.3.1.3. Threats of substitution
- 3.3.1.4. Threats from new entrants
- 3.3.1.5. Competitive rivalry
- 3.3.2. PESTEL Analysis
- 3.3.2.1. Political landscape
- 3.3.2.2. Economic landscape
- 3.3.2.3. Social landscape
- 3.3.2.4. Technological landscape
- 3.3.2.5. Environmental landscape
- 3.3.2.6. Legal landscape
- Chapter 4. Automotive Predictive Analytics Market: Component Estimates & Trend Analysis
- 4.1. Segment Dashboard
- 4.2. Automotive Predictive Analytics Market: Component Movement Analysis, 2024 & 2033 (USD Million)
- 4.3. Software
- 4.3.1. Software Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 4.4. Services
- 4.4.1. Services Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 4.5. Hardware
- 4.5.1. Hardware Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- Chapter 5. Automotive Predictive Analytics Market: Application Estimates & Trend Analysis
- 5.1. Segment Dashboard
- 5.2. Automotive Predictive Analytics Market: Application Movement Analysis, 2024 & 2033 (USD Million)
- 5.3. Predictive Maintenance
- 5.3.1. Predictive Maintenance Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 5.4. Vehicle Telematics
- 5.4.1. Vehicle Telematics Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 5.5. Driver & Behavior Analytics
- 5.5.1. Driver & Behavior Analytics Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 5.6. Fleet Management
- 5.6.1. Fleet Management Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 5.7. Warranty Analytics
- 5.7.1. Warranty Analytics Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 5.8. Others
- 5.8.1. Others Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- Chapter 6. Automotive Predictive Analytics Market: Vehicle Type Estimates & Trend Analysis
- 6.1. Segment Dashboard
- 6.2. Automotive Predictive Analytics Market: Vehicle Type Movement Analysis,2024 & 2033 (USD Million)
- 6.3. Passenger Cars
- 6.3.1. Passenger Cars Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 6.4. Commercial Vehicles
- 6.4.1. Commercial Vehicles Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 6.5. Electric Vehicles (EVs)
- 6.5.1. Electric Vehicles (EVs) Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- Chapter 7. Automotive Predictive Analytics Market: End User Estimates & Trend Analysis
- 7.1. Segment Dashboard
- 7.2. Automotive Predictive Analytics Market: End User Movement Analysis, 2024 & 2033 (USD Million)
- 7.3. OEMs (Original Equipment Manufacturers)
- 7.3.1. OEMs (Original Equipment Manufacturers) Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 7.4. Fleet Operators
- 7.4.1. Fleet Operators Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 7.5. Insurance Providers
- 7.5.1. Insurance Providers Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- 7.6. Others
- 7.6.1. Others Market Revenue Estimates and Forecasts, 2021 - 2033 (USD Million)
- Chapter 8. Automotive Predictive Analytics Market: Regional Estimates & Trend Analysis
- 8.1. Automotive Predictive Analytics Market Share, By Region, 2024 & 2033 (USD Million)
- 8.2. North America
- 8.2.1. North America Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.2.2. U.S.
- 8.2.2.1. U.S. Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.2.3. Canada
- 8.2.3.1. Canada Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.2.4. Mexico
- 8.2.4.1. Mexico Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.3. Europe
- 8.3.1. Europe Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.3.2. UK
- 8.3.2.1. UK Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.3.3. Germany
- 8.3.3.1. Germany Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.3.4. France
- 8.3.4.1. France Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.4. Asia Pacific
- 8.4.1. Asia Pacific Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.4.2. China
- 8.4.2.1. China Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.4.3. Japan
- 8.4.3.1. Japan Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.4.4. India
- 8.4.4.1. India Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.4.5. South Korea
- 8.4.5.1. South Korea Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.4.6. Australia
- 8.4.6.1. Australia Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.5. Latin America
- 8.5.1. Latin America Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.5.2. Brazil
- 8.5.2.1. Brazil Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.6. Middle East and Africa
- 8.6.1. Middle East and Africa Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.6.2. UAE
- 8.6.2.1. UAE Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.6.3. KSA
- 8.6.3.1. KSA Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- 8.6.4. South Africa
- 8.6.4.1. South Africa Automotive Predictive Analytics Market Estimates and Forecasts, 2021 - 2033 (USD Million)
- Chapter 9. Competitive Landscape
- 9.1. Company Categorization
- 9.2. Company Market Positioning
- 9.3. Company Heat Map Analysis
- 9.4. Company Profiles/Listing
- 9.4.1. IBM
- 9.4.1.1. Participant’s Overview
- 9.4.1.2. Financial Performance
- 9.4.1.3. Product Benchmarking
- 9.4.1.4. Strategic Initiatives
- 9.4.2. SAP SE
- 9.4.2.1. Participant’s Overview
- 9.4.2.2. Financial Performance
- 9.4.2.3. Product Benchmarking
- 9.4.2.4. Strategic Initiatives
- 9.4.3. Cloud Software Group, Inc.
- 9.4.3.1. Participant’s Overview
- 9.4.3.2. Financial Performance
- 9.4.3.3. Product Benchmarking
- 9.4.3.4. Strategic Initiatives
- 9.4.4. Continental AG
- 9.4.4.1. Participant’s Overview
- 9.4.4.2. Financial Performance
- 9.4.4.3. Product Benchmarking
- 9.4.4.4. Strategic Initiatives
- 9.4.5. Microsoft
- 9.4.5.1. Participant’s Overview
- 9.4.5.2. Financial Performance
- 9.4.5.3. Product Benchmarking
- 9.4.5.4. Strategic Initiatives
- 9.4.6. NXP Semiconductors
- 9.4.6.1. Participant’s Overview
- 9.4.6.2. Financial Performance
- 9.4.6.3. Product Benchmarking
- 9.4.6.4. Strategic Initiatives
- 9.4.7. Oracle
- 9.4.7.1. Participant’s Overview
- 9.4.7.2. Financial Performance
- 9.4.7.3. Product Benchmarking
- 9.4.7.4. Strategic Initiatives
- 9.4.8. PTC
- 9.4.8.1. Participant’s Overview
- 9.4.8.2. Financial Performance
- 9.4.8.3. Product Benchmarking
- 9.4.8.4. Strategic Initiatives
- 9.4.9. Robert Bosch GmbH
- 9.4.9.1. Participant’s Overview
- 9.4.9.2. Financial Performance
- 9.4.9.3. Product Benchmarking
- 9.4.9.4. Strategic Initiatives
- 9.4.10. SAS Institute Inc.
- 9.4.10.1. Participant’s Overview
- 9.4.10.2. Financial Performance
- 9.4.10.3. Product Benchmarking
- 9.4.10.4. Strategic Initiatives
- 9.4.11. ZF Friedrichshafen AG
- 9.4.11.1. Participant’s Overview
- 9.4.11.2. Financial Performance
- 9.4.11.3. Product Benchmarking
- 9.4.11.4. Strategic Initiatives
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.