Report cover image

Global Machine Learning Operations (MLOps) Market 2025 by Company, Regions, Type and Application, Forecast to 2031

Publisher GlobalInfoResearch
Published Sep 16, 2025
Length 127 Pages
SKU # GFSH20404005

Description

According to our (Global Info Research) latest study, the global Machine Learning Operations (MLOps) market size was valued at US$ 1582 million in 2024 and is forecast to a readjusted size of USD 16940 million by 2031 with a CAGR of 40.8% during review period.

MLOps is the process of taking an experimental Machine Learning model into a production system. The word is a compound of “Machine Learning” and the continuous development practice of DevOps in the software field. Machine Learning models are tested and developed in isolated experimental systems. When an algorithm is ready to be launched, MLOps is practiced between Data Scientists, DevOps, and Machine Learning engineers to transition the algorithm to production systems. Similar to DevOps or DataOps approaches, MLOps seeks to increase automation and improve the quality of production models, while also focusing on business and regulatory requirements. While MLOps started as a set of best practices, it is slowly evolving into an independent approach to ML lifecycle management. MLOps applies to the entire lifecycle - from integrating with model generation (software development lifecycle, continuous integration/continuous delivery), orchestration, and deployment, to health, diagnostics, governance, and business metrics.

The key vendors providing Machine Learning Operations (MLOps) worldwide are IBM, DataRobot, SAS, Microsoft, Amazon, Google, Dataiku, Databricks, and others. The top five vendors together hold over 45% of the market share, with the largest producer being IBM with 10% of the market share. The major regions offering machine learning operations globally are North America, Europe, China, and the Middle East. In terms of their product categories, on-premise type have the highest market share at over 55%, followed by cloud MLOps at 35%. In terms of its applications, BFSI is its top application area, with over 25% market share, followed by the public sector and manufacturing.

This report is a detailed and comprehensive analysis for global Machine Learning Operations (MLOps) market. Both quantitative and qualitative analyses are presented by company, by region & country, by Type and by Application. As the market is constantly changing, this report explores the competition, supply and demand trends, as well as key factors that contribute to its changing demands across many markets. Company profiles and product examples of selected competitors, along with market share estimates of some of the selected leaders for the year 2025, are provided.

Key Features:

Global Machine Learning Operations (MLOps) market size and forecasts, in consumption value ($ Million), 2020-2031

Global Machine Learning Operations (MLOps) market size and forecasts by region and country, in consumption value ($ Million), 2020-2031

Global Machine Learning Operations (MLOps) market size and forecasts, by Type and by Application, in consumption value ($ Million), 2020-2031

Global Machine Learning Operations (MLOps) market shares of main players, in revenue ($ Million), 2020-2025

The Primary Objectives in This Report Are:

To determine the size of the total market opportunity of global and key countries

To assess the growth potential for Machine Learning Operations (MLOps)

To forecast future growth in each product and end-use market

To assess competitive factors affecting the marketplace

This report profiles key players in the global Machine Learning Operations (MLOps) market based on the following parameters - company overview, revenue, gross margin, product portfolio, geographical presence, and key developments. Key companies covered as a part of this study include IBM, DataRobot, SAS, Microsoft, Amazon, Google, Dataiku, Databricks, HPE, Lguazio, etc.

This report also provides key insights about market drivers, restraints, opportunities, new product launches or approvals.

Market segmentation

Machine Learning Operations (MLOps) market is split by Type and by Application. For the period 2020-2031, the growth among segments provides accurate calculations and forecasts for Consumption Value by Type and by Application. This analysis can help you expand your business by targeting qualified niche markets.

Market segment by Type
On-premise
Cloud
Others

Market segment by Application
BFSI
Healthcare
Retail
Manufacturing
Public Sector
Others

Market segment by players, this report covers
IBM
DataRobot
SAS
Microsoft
Amazon
Google
Dataiku
Databricks
HPE
Lguazio
ClearML
Modzy
Comet
Cloudera
Paperpace
Valohai

Market segment by regions, regional analysis covers

North America (United States, Canada and Mexico)

Europe (Germany, France, UK, Russia, Italy and Rest of Europe)

Asia-Pacific (China, Japan, South Korea, India, Southeast Asia and Rest of Asia-Pacific)

South America (Brazil, Rest of South America)

Middle East & Africa (Turkey, Saudi Arabia, UAE, Rest of Middle East & Africa)

The content of the study subjects, includes a total of 13 chapters:

Chapter 1, to describe Machine Learning Operations (MLOps) product scope, market overview, market estimation caveats and base year.

Chapter 2, to profile the top players of Machine Learning Operations (MLOps), with revenue, gross margin, and global market share of Machine Learning Operations (MLOps) from 2020 to 2025.

Chapter 3, the Machine Learning Operations (MLOps) competitive situation, revenue, and global market share of top players are analyzed emphatically by landscape contrast.

Chapter 4 and 5, to segment the market size by Type and by Application, with consumption value and growth rate by Type, by Application, from 2020 to 2031

Chapter 6, 7, 8, 9, and 10, to break the market size data at the country level, with revenue and market share for key countries in the world, from 2020 to 2025.and Machine Learning Operations (MLOps) market forecast, by regions, by Type and by Application, with consumption value, from 2026 to 2031.

Chapter 11, market dynamics, drivers, restraints, trends, Porters Five Forces analysis.

Chapter 12, the key raw materials and key suppliers, and industry chain of Machine Learning Operations (MLOps).

Chapter 13, to describe Machine Learning Operations (MLOps) research findings and conclusion.

Table of Contents

127 Pages
1 Market Overview
2 Company Profiles
3 Market Competition, by Players
4 Market Size Segment by Type
5 Market Size Segment by Application
6 North America
7 Europe
8 Asia-Pacific
9 South America
10 Middle East & Africa
11 Market Dynamics
12 Industry Chain Analysis
13 Research Findings and Conclusion
14 Appendix
How Do Licenses Work?
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.