Report cover image

Global Fake Image Machine Learning and Deep Learning Detection Market 2025 by Company, Regions, Type and Application, Forecast to 2031

Publisher GlobalInfoResearch
Published Dec 28, 2025
Length 134 Pages
SKU # GFSH20687692

Description

According to our latest research, the global Fake Image Machine Learning and Deep Learning Detection market size will reach USD million in 2031, growing at a CAGR of %over the analysis period.

The fake image machine learning and deep learning detection market is influenced by several market factors as follows:

Increase in deepfake attacks: The number of deepfake attacks has been increasing, and this has prompted organizations to invest in fake image detection technologies to protect their brands and reputations.

Growth in social media usage: As social media becomes more prevalent, the risk of fake images being spread on these platforms also increases. This has led to a greater need for fake image detection solutions among social media companies.

Government and regulatory initiatives: Some governments and regulatory bodies have been taking steps to crack down on the use of fake images and other synthetic media for malicious purposes. This has led to an increased focus on developing and implementing fake image detection technologies.

Adoption of AI and machine learning: Advanced AI and machine learning algorithms are being used to develop more sophisticated fake image detection solutions. These technologies can analyze images and videos to determine whether they are real or fake, and they are becoming more accurate and efficient over time.

Overall, the fake image detection market is expected to continue growing as the threat of fake images and other synthetic media becomes more prevalent. The key players in the market include CognitiveScale, Ascertiv, Viscopic, and others, and they are developing advanced technologies to help organizations protect themselves against fake images and other types of malicious content.

This report is a detailed and comprehensive analysis for global Fake Image Machine Learning and Deep Learning Detection market. Both quantitative and qualitative analyses are presented by company, by region & country, by Type and by Application. As the market is constantly changing, this report explores the competition, supply and demand trends, as well as key factors that contribute to its changing demands across many markets. Company profiles and product examples of selected competitors, along with market share estimates of some of the selected leaders for the year 2025, are provided.

Key Features:

Global Fake Image Machine Learning and Deep Learning Detection market size and forecasts, in consumption value ($ Million), 2020-2031

Global Fake Image Machine Learning and Deep Learning Detection market size and forecasts by region and country, in consumption value ($ Million), 2020-2031

Global Fake Image Machine Learning and Deep Learning Detection market size and forecasts, by Type and by Application, in consumption value ($ Million), 2020-2031

Global Fake Image Machine Learning and Deep Learning Detection market shares of main players, in revenue ($ Million), 2020-2025

The Primary Objectives in This Report Are:

To determine the size of the total market opportunity of global and key countries

To assess the growth potential for Fake Image Machine Learning and Deep Learning Detection

To forecast future growth in each product and end-use market

To assess competitive factors affecting the marketplace

This report profiles key players in the global Fake Image Machine Learning and Deep Learning Detection market based on the following parameters - company overview, revenue, gross margin, product portfolio, geographical presence, and key developments. Key companies covered as a part of this study include Microsoft Corporation, Gradiant, Facia, Image Forgery Detector, Q-integrity, iDenfy, DuckDuckGoose AI, Primeau Forensics, Sentinel AI, iProov, etc.

This report also provides key insights about market drivers, restraints, opportunities, new product launches or approvals.

Market segmentation

Fake Image Machine Learning and Deep Learning Detection market is split by Type and by Application. For the period 2020-2031, the growth among segments provides accurate calculations and forecasts for Consumption Value by Type and by Application. This analysis can help you expand your business by targeting qualified niche markets.

Market segment by Type
On-Premise
Cloud-based

Market segment by Application
Finance
Access Control System
Mobile Device Security Detection
Digital Image Forensics
Media
Other

Market segment by players, this report covers
Microsoft Corporation
Gradiant
Facia
Image Forgery Detector
Q-integrity
iDenfy
DuckDuckGoose AI
Primeau Forensics
Sentinel AI
iProov
Truepic
Sensity AI
BioID
Reality Defender
Clearview AI
Kairos

Market segment by regions, regional analysis covers

North America (United States, Canada and Mexico)

Europe (Germany, France, UK, Russia, Italy and Rest of Europe)

Asia-Pacific (China, Japan, South Korea, India, Southeast Asia and Rest of Asia-Pacific)

South America (Brazil, Rest of South America)

Middle East & Africa (Turkey, Saudi Arabia, UAE, Rest of Middle East & Africa)

The content of the study subjects, includes a total of 13 chapters:

Chapter 1, to describe Fake Image Machine Learning and Deep Learning Detection product scope, market overview, market estimation caveats and base year.

Chapter 2, to profile the top players of Fake Image Machine Learning and Deep Learning Detection, with revenue, gross margin, and global market share of Fake Image Machine Learning and Deep Learning Detection from 2020 to 2025.

Chapter 3, the Fake Image Machine Learning and Deep Learning Detection competitive situation, revenue, and global market share of top players are analyzed emphatically by landscape contrast.

Chapter 4 and 5, to segment the market size by Type and by Application, with consumption value and growth rate by Type, by Application, from 2020 to 2031

Chapter 6, 7, 8, 9, and 10, to break the market size data at the country level, with revenue and market share for key countries in the world, from 2020 to 2025.and Fake Image Machine Learning and Deep Learning Detection market forecast, by regions, by Type and by Application, with consumption value, from 2026 to 2031.

Chapter 11, market dynamics, drivers, restraints, trends, Porters Five Forces analysis.

Chapter 12, the key raw materials and key suppliers, and industry chain of Fake Image Machine Learning and Deep Learning Detection.

Chapter 13, to describe Fake Image Machine Learning and Deep Learning Detection research findings and conclusion.

Table of Contents

134 Pages
1 Market Overview
2 Company Profiles
3 Market Competition, by Players
4 Market Size Segment by Type
5 Market Size Segment by Application
6 North America
7 Europe
8 Asia-Pacific
9 South America
10 Middle East & Africa
11 Market Dynamics
12 Industry Chain Analysis
13 Research Findings and Conclusion
14 Appendix
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.