
Big Data Analytics in Retail Market Size and Share Outlook - Forecast Trends and Growth Analysis Report (2025-2034)
Description
The global big data analytics in retail market size reached USD 8.93 Billion in 2024 . The market is expected to grow at a CAGR of 21.80% between 2025 and 2034, reaching almost USD 64.17 Billion by 2034 .
Big data analytics revolutionizes the retail sector, offering in-depth insights into consumer behaviour, preferences, and trends. Retailers utilize this abundance of data to enhance customer experiences, streamline inventory management, and personalise marketing strategies.
As per the global big data analytics in retail market report, by analysing vast datasets in real-time, companies can make informed decisions, accurately forecast demand, and customize their offerings to nurture customer loyalty. This data-driven approach not only improves sales and profitability but also enables retailers to stay adaptable in a dynamic market, swiftly adapting to changing consumer demands and maintaining a competitive advantage.
As per Statistics Canada, Canadian retail sales for 2023 reached $794.4 billion, marking a 2.2% increase from the previous year. This uptick in sales contributes to the overall expansion of global big data analytics in retail market.
Key Trends and Developments
The expansion of the global big data analytics in retail market is driven by the integration of IoT, optimization of supply chains, predictive maintenance, and ethical data utilization.
February 2024
Circana™, a top consumer behaviour advisor, unveiled Liquid Data Engage™ globally, simplifying retail challenges by integrating market, category, loyalty, and supply chain data for growth.
January 2024
Microsoft introduced GenAI and industry-specific features in data fabric, including GenAI Copilots, to enhance retail personalization and support frontline workers.
November 2023
Industry leaders observed that technologies such as generative AI, machine learning, and big data analytics transformed India's e-commerce and retail, enhancing consumer experiences.
March 2023
KPMG aimed to provide retail clients with a competitive edge with Dash, a digital tool merging business data and AI for improved decisions.
IoT Integration
The use of IoT devices in stores provides instant insights into customer behaviour, foot traffic, and product interactions. This helps retailers enhance store layouts, placements, and customer experiences, thereby fuelling the expansion of the global big data analytics market in retail market.
Supply Chain Optimization
The global big data analytics in retail market growth is driven by the utilization of big data analytics improves inventory management, driving supply chain efficiency, cost reduction, and stockout minimization via predictive analytics and demand forecasting.
Predictive Maintenance
By implementing big data analytics for equipment monitoring and maintenance scheduling, retail businesses minimize downtime, enhance operational efficiency, and ensure uninterrupted customer service, thereby contributing to the global retail big data analytics market growth.
Ethical Data Use
Retailers give top priority to data privacy and security, following regulations and adopting transparent data practices to establish customer trust. This safeguards sensitive information while leveraging the potential of big data for business expansion.
Big Data Analytics in Retail Market Trends
As per the global big data analytics in retail market report, retailers are frequently employing AI algorithms to examine customer data, providing customized shopping experiences via personalized recommendations and focused marketing. Analysing customer sentiments enables retailers to tailor marketing, product creation, and customer service to evolving preferences.
Swift data processing enables retailers to promptly react to customer behaviour, refining pricing, promotions, and inventory in real-time.
Big Data Analytics in Retail Market Segmentation
Global Big Data Analytics in Retail Market Report and Forecast 2025-2034" offers a detailed analysis of the market based on the following segments:
Market Breakup by Component
Cloud-based solutions offer cost efficiency via pay-as-you-go models, accessible data for collaboration and quick decision-making, rapid tool deployment for adapting to trends, and advanced analytics without in-house development.
On-premises solutions ensure data control for compliance, customized analytics, fast processing for real-time insights, and compliance with data sovereignty laws through geographic restrictions.
Based on organisation size, global big data analytics in retail market share is led by large enterprises
For large retailers, big data analytics facilitates personalized customer experiences, streamlined inventory management, and operational efficiency, resulting in enhanced productivity and cost reduction.
For SMEs, big data analytics provides customer insights for tailored products, cost-effective marketing strategies, optimized inventory management, and improved customer service, fostering customer engagement and loyalty.
Big Data Analytics in Retail Market Analysis by Region
Based on geography, the global big data analytics in retail market share is led by North America. Rapid digitalization and the increasing volume of data generated in the retail industry are fuelling the adoption of big data analytics, leading to market growth. Insights derived from retail big data analytics are increasingly utilized in marketing campaigns, a significant trend boosting the market.
In the Asia Pacific region, the rising adoption of big data analytics to analyse consumer behaviour in the online retail sector is propelling market growth. Retailers use big data analytics solutions to monitor consumer purchases and behaviour, providing tailored recommendations, thus driving market expansion.
As per the National Investment, Promotion, and Facilitation Agency, India secured the second position in the Global Retail Development Index (GRDI) for 2021. The retail industry contributes more than 10% to India's GDP and employs approximately 8% of its workforce, totalling over 35 million people. Projections suggest the sector will generate 25 million new jobs by 2030.
Competitive Landscape of Big Data Analytics in Retail Market
Market players are enhancing global big data analytics in retail market by providing a variety of technology services.
Cisco Systems Inc.
Cisco Systems Inc., established in 1984 and headquartered in San Jose, California, stands at the forefront of the global networking technology industry. It delivers networking, security, collaboration, and cloud services to organizations on a global scale.
Adobe Inc.
Adobe Inc., founded in 1982 and located in San Jose, California, is widely recognized for its innovative creative and digital experience software such as Photoshop, Illustrator, and Acrobat. Adobe's solutions empower creativity, facilitate marketing efforts, and streamline document management.
IBM Corporation
IBM Corporation, with its origins dating back to 1911 and its headquarters in Armonk, New York, has been a trailblazer in computing technologies. IBM offers an array of technology services spanning from mainframes and servers to cutting-edge cloud computing and artificial intelligence solutions.
Oracle Corporation
Oracle Corporation, established in 1977 and headquartered in Redwood City, California, leads the way in database software and enterprise cloud solutions globally. Oracle provides a comprehensive suite of applications, platforms, and tools to businesses of all sizes.
Other key players in the global big data analytics in retail market are SAP SE, Teradata Corporation, Wipro Limited, Sisense Ltd., QlikTech International AB, and Zoho Corporation Pvt. Ltd., among others.
Big data analytics revolutionizes the retail sector, offering in-depth insights into consumer behaviour, preferences, and trends. Retailers utilize this abundance of data to enhance customer experiences, streamline inventory management, and personalise marketing strategies.
As per the global big data analytics in retail market report, by analysing vast datasets in real-time, companies can make informed decisions, accurately forecast demand, and customize their offerings to nurture customer loyalty. This data-driven approach not only improves sales and profitability but also enables retailers to stay adaptable in a dynamic market, swiftly adapting to changing consumer demands and maintaining a competitive advantage.
As per Statistics Canada, Canadian retail sales for 2023 reached $794.4 billion, marking a 2.2% increase from the previous year. This uptick in sales contributes to the overall expansion of global big data analytics in retail market.
Key Trends and Developments
The expansion of the global big data analytics in retail market is driven by the integration of IoT, optimization of supply chains, predictive maintenance, and ethical data utilization.
February 2024
Circana™, a top consumer behaviour advisor, unveiled Liquid Data Engage™ globally, simplifying retail challenges by integrating market, category, loyalty, and supply chain data for growth.
January 2024
Microsoft introduced GenAI and industry-specific features in data fabric, including GenAI Copilots, to enhance retail personalization and support frontline workers.
November 2023
Industry leaders observed that technologies such as generative AI, machine learning, and big data analytics transformed India's e-commerce and retail, enhancing consumer experiences.
March 2023
KPMG aimed to provide retail clients with a competitive edge with Dash, a digital tool merging business data and AI for improved decisions.
IoT Integration
The use of IoT devices in stores provides instant insights into customer behaviour, foot traffic, and product interactions. This helps retailers enhance store layouts, placements, and customer experiences, thereby fuelling the expansion of the global big data analytics market in retail market.
Supply Chain Optimization
The global big data analytics in retail market growth is driven by the utilization of big data analytics improves inventory management, driving supply chain efficiency, cost reduction, and stockout minimization via predictive analytics and demand forecasting.
Predictive Maintenance
By implementing big data analytics for equipment monitoring and maintenance scheduling, retail businesses minimize downtime, enhance operational efficiency, and ensure uninterrupted customer service, thereby contributing to the global retail big data analytics market growth.
Ethical Data Use
Retailers give top priority to data privacy and security, following regulations and adopting transparent data practices to establish customer trust. This safeguards sensitive information while leveraging the potential of big data for business expansion.
Big Data Analytics in Retail Market Trends
As per the global big data analytics in retail market report, retailers are frequently employing AI algorithms to examine customer data, providing customized shopping experiences via personalized recommendations and focused marketing. Analysing customer sentiments enables retailers to tailor marketing, product creation, and customer service to evolving preferences.
Swift data processing enables retailers to promptly react to customer behaviour, refining pricing, promotions, and inventory in real-time.
Big Data Analytics in Retail Market Segmentation
Global Big Data Analytics in Retail Market Report and Forecast 2025-2034" offers a detailed analysis of the market based on the following segments:
Market Breakup by Component
- Software
- Service
- On-Premise
- Cloud
- Large Enterprises
- SMES
- North America
- Europe
- Asia Pacific
- Latin America
- Middle East and Africa
Cloud-based solutions offer cost efficiency via pay-as-you-go models, accessible data for collaboration and quick decision-making, rapid tool deployment for adapting to trends, and advanced analytics without in-house development.
On-premises solutions ensure data control for compliance, customized analytics, fast processing for real-time insights, and compliance with data sovereignty laws through geographic restrictions.
Based on organisation size, global big data analytics in retail market share is led by large enterprises
For large retailers, big data analytics facilitates personalized customer experiences, streamlined inventory management, and operational efficiency, resulting in enhanced productivity and cost reduction.
For SMEs, big data analytics provides customer insights for tailored products, cost-effective marketing strategies, optimized inventory management, and improved customer service, fostering customer engagement and loyalty.
Big Data Analytics in Retail Market Analysis by Region
Based on geography, the global big data analytics in retail market share is led by North America. Rapid digitalization and the increasing volume of data generated in the retail industry are fuelling the adoption of big data analytics, leading to market growth. Insights derived from retail big data analytics are increasingly utilized in marketing campaigns, a significant trend boosting the market.
In the Asia Pacific region, the rising adoption of big data analytics to analyse consumer behaviour in the online retail sector is propelling market growth. Retailers use big data analytics solutions to monitor consumer purchases and behaviour, providing tailored recommendations, thus driving market expansion.
As per the National Investment, Promotion, and Facilitation Agency, India secured the second position in the Global Retail Development Index (GRDI) for 2021. The retail industry contributes more than 10% to India's GDP and employs approximately 8% of its workforce, totalling over 35 million people. Projections suggest the sector will generate 25 million new jobs by 2030.
Competitive Landscape of Big Data Analytics in Retail Market
Market players are enhancing global big data analytics in retail market by providing a variety of technology services.
Cisco Systems Inc.
Cisco Systems Inc., established in 1984 and headquartered in San Jose, California, stands at the forefront of the global networking technology industry. It delivers networking, security, collaboration, and cloud services to organizations on a global scale.
Adobe Inc.
Adobe Inc., founded in 1982 and located in San Jose, California, is widely recognized for its innovative creative and digital experience software such as Photoshop, Illustrator, and Acrobat. Adobe's solutions empower creativity, facilitate marketing efforts, and streamline document management.
IBM Corporation
IBM Corporation, with its origins dating back to 1911 and its headquarters in Armonk, New York, has been a trailblazer in computing technologies. IBM offers an array of technology services spanning from mainframes and servers to cutting-edge cloud computing and artificial intelligence solutions.
Oracle Corporation
Oracle Corporation, established in 1977 and headquartered in Redwood City, California, leads the way in database software and enterprise cloud solutions globally. Oracle provides a comprehensive suite of applications, platforms, and tools to businesses of all sizes.
Other key players in the global big data analytics in retail market are SAP SE, Teradata Corporation, Wipro Limited, Sisense Ltd., QlikTech International AB, and Zoho Corporation Pvt. Ltd., among others.
Table of Contents
173 Pages
- 1 Executive Summary
- 1.1 Market Size 2024-2025
- 1.2 Market Growth 2025(F)-2034(F)
- 1.3 Key Demand Drivers
- 1.4 Key Players and Competitive Structure
- 1.5 Industry Best Practices
- 1.6 Recent Trends and Developments
- 1.7 Industry Outlook
- 2 Market Overview and Stakeholder Insights
- 2.1 Market Trends
- 2.2 Key Verticals
- 2.3 Key Regions
- 2.4 Supplier Power
- 2.5 Buyer Power
- 2.6 Key Market Opportunities and Risks
- 2.7 Key Initiatives by Stakeholders
- 3 Economic Summary
- 3.1 GDP Outlook
- 3.2 GDP Per Capita Growth
- 3.3 Inflation Trends
- 3.4 Democracy Index
- 3.5 Gross Public Debt Ratios
- 3.6 Balance of Payment (BoP) Position
- 3.7 Population Outlook
- 3.8 Urbanisation Trends
- 4 Country Risk Profiles
- 4.1 Country Risk
- 4.2 Business Climate
- 5 Global Big Data Analytics in Retail Market Analysis
- 5.1 Key Industry Highlights
- 5.2 Global Big Data Analytics in Retail Historical Market (2018-2024)
- 5.3 Global Big Data Analytics in Retail Market Forecast (2025-2034)
- 5.4 Global Big Data Analytics in Retail Market by Component
- 5.4.1 Software
- 5.4.1.1 Historical Trend (2018-2024)
- 5.4.1.2 Forecast Trend (2025-2034)
- 5.4.2 Service
- 5.4.2.1 Historical Trend (2018-2024)
- 5.4.2.2 Forecast Trend (2025-2034)
- 5.5 Global Big Data Analytics in Retail Market by Deployment
- 5.5.1 On-Premise
- 5.5.1.1 Historical Trend (2018-2024)
- 5.5.1.2 Forecast Trend (2025-2034)
- 5.5.2 Cloud
- 5.5.2.1 Historical Trend (2018-2024)
- 5.5.2.2 Forecast Trend (2025-2034)
- 5.6 Global Big Data Analytics in Retail Market by Organisation Size
- 5.6.1 Large Enterprises
- 5.6.1.1 Historical Trend (2018-2024)
- 5.6.1.2 Forecast Trend (2025-2034)
- 5.6.2 SMES
- 5.6.2.1 Historical Trend (2018-2024)
- 5.6.2.2 Forecast Trend (2025-2034)
- 5.7 Global Big Data Analytics in Retail Market by Region
- 5.7.1 North America
- 5.7.1.1 Historical Trend (2018-2024)
- 5.7.1.2 Forecast Trend (2025-2034)
- 5.7.2 Europe
- 5.7.2.1 Historical Trend (2018-2024)
- 5.7.2.2 Forecast Trend (2025-2034)
- 5.7.3 Asia Pacific
- 5.7.3.1 Historical Trend (2018-2024)
- 5.7.3.2 Forecast Trend (2025-2034)
- 5.7.4 Latin America
- 5.7.4.1 Historical Trend (2018-2024)
- 5.7.4.2 Forecast Trend (2025-2034)
- 5.7.5 Middle East and Africa
- 5.7.5.1 Historical Trend (2018-2024)
- 5.7.5.2 Forecast Trend (2025-2034)
- 6 North America Big Data Analytics in Retail Market Analysis
- 6.1 United States of America
- 6.1.1 Historical Trend (2018-2024)
- 6.1.2 Forecast Trend (2025-2034)
- 6.2 Canada
- 6.2.1 Historical Trend (2018-2024)
- 6.2.2 Forecast Trend (2025-2034)
- 7 Europe Big Data Analytics in Retail Market Analysis
- 7.1 United Kingdom
- 7.1.1 Historical Trend (2018-2024)
- 7.1.2 Forecast Trend (2025-2034)
- 7.2 Germany
- 7.2.1 Historical Trend (2018-2024)
- 7.2.2 Forecast Trend (2025-2034)
- 7.3 France
- 7.3.1 Historical Trend (2018-2024)
- 7.3.2 Forecast Trend (2025-2034)
- 7.4 Italy
- 7.4.1 Historical Trend (2018-2024)
- 7.4.2 Forecast Trend (2025-2034)
- 7.5 Others
- 8 Asia Pacific Big Data Analytics in Retail Market Analysis
- 8.1 China
- 8.1.1 Historical Trend (2018-2024)
- 8.1.2 Forecast Trend (2025-2034)
- 8.2 Japan
- 8.2.1 Historical Trend (2018-2024)
- 8.2.2 Forecast Trend (2025-2034)
- 8.3 India
- 8.3.1 Historical Trend (2018-2024)
- 8.3.2 Forecast Trend (2025-2034)
- 8.4 ASEAN
- 8.4.1 Historical Trend (2018-2024)
- 8.4.2 Forecast Trend (2025-2034)
- 8.5 Australia
- 8.5.1 Historical Trend (2018-2024)
- 8.5.2 Forecast Trend (2025-2034)
- 8.6 Others
- 9 Latin America Big Data Analytics in Retail Market Analysis
- 9.1 Brazil
- 9.1.1 Historical Trend (2018-2024)
- 9.1.2 Forecast Trend (2025-2034)
- 9.2 Argentina
- 9.2.1 Historical Trend (2018-2024)
- 9.2.2 Forecast Trend (2025-2034)
- 9.3 Mexico
- 9.3.1 Historical Trend (2018-2024)
- 9.3.2 Forecast Trend (2025-2034)
- 9.4 Others
- 10 Middle East and Africa Big Data Analytics in Retail Market Analysis
- 10.1 Saudi Arabia
- 10.1.1 Historical Trend (2018-2024)
- 10.1.2 Forecast Trend (2025-2034)
- 10.2 United Arab Emirates
- 10.2.1 Historical Trend (2018-2024)
- 10.2.2 Forecast Trend (2025-2034)
- 10.3 Nigeria
- 10.3.1 Historical Trend (2018-2024)
- 10.3.2 Forecast Trend (2025-2034)
- 10.4 South Africa
- 10.4.1 Historical Trend (2018-2024)
- 10.4.2 Forecast Trend (2025-2034)
- 10.5 Others
- 11 Market Dynamics
- 11.1 SWOT Analysis
- 11.1.1 Strengths
- 11.1.2 Weaknesses
- 11.1.3 Opportunities
- 11.1.4 Threats
- 11.2 Porter’s Five Forces Analysis
- 11.2.1 Supplier’s Power
- 11.2.2 Buyer’s Power
- 11.2.3 Threat of New Entrants
- 11.2.4 Degree of Rivalry
- 11.2.5 Threat of Substitutes
- 11.3 Key Indicators for Demand
- 11.4 Key Indicators for Price
- 12 Value Chain Analysis
- 13 Competitive Landscape
- 13.1 Supplier Selection
- 13.2 Key Global Players
- 13.3 Key Regional Players
- 13.4 Key Player Strategies
- 13.5 Company Profiles
- 13.5.1 Cisco Systems Inc.
- 13.5.1.1 Company Overview
- 13.5.1.2 Product Portfolio
- 13.5.1.3 Demographic Reach and Achievements
- 13.5.1.4 Certifications
- 13.5.2 Adobe Inc.
- 13.5.2.1 Company Overview
- 13.5.2.2 Product Portfolio
- 13.5.2.3 Demographic Reach and Achievements
- 13.5.2.4 Certifications
- 13.5.3 IBM Corporation
- 13.5.3.1 Company Overview
- 13.5.3.2 Product Portfolio
- 13.5.3.3 Demographic Reach and Achievements
- 13.5.3.4 Certifications
- 13.5.4 Oracle Corporation
- 13.5.4.1 Company Overview
- 13.5.4.2 Product Portfolio
- 13.5.4.3 Demographic Reach and Achievements
- 13.5.4.4 Certifications
- 13.5.5 SAP SE
- 13.5.5.1 Company Overview
- 13.5.5.2 Product Portfolio
- 13.5.5.3 Demographic Reach and Achievements
- 13.5.5.4 Certifications
- 13.5.6 Teradata Corporation
- 13.5.6.1 Company Overview
- 13.5.6.2 Product Portfolio
- 13.5.6.3 Demographic Reach and Achievements
- 13.5.6.4 Certifications
- 13.5.7 Wipro Limited
- 13.5.7.1 Company Overview
- 13.5.7.2 Product Portfolio
- 13.5.7.3 Demographic Reach and Achievements
- 13.5.7.4 Certifications
- 13.5.8 Sisense Ltd
- 13.5.8.1 Company Overview
- 13.5.8.2 Product Portfolio
- 13.5.8.3 Demographic Reach and Achievements
- 13.5.8.4 Certifications
- 13.5.9 QlikTech International AB
- 13.5.9.1 Company Overview
- 13.5.9.2 Product Portfolio
- 13.5.9.3 Demographic Reach and Achievements
- 13.5.9.4 Certifications
- 13.5.10 Zoho Corporation Pvt. Ltd.
- 13.5.10.1 Company Overview
- 13.5.10.2 Product Portfolio
- 13.5.10.3 Demographic Reach and Achievements
- 13.5.10.4 Certifications
- 13.5.11 Others
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.