
Automotive Predictive Maintenance Market Size and Share - Outlook Report, Forecast Trends and Growth Analysis (2025-2034)
Description
The global automotive predictive maintenance market size is projected to grow at a CAGR of 13.20% between 2025 and 2034. The market is being aided by the emergence of digital twins and the rising need for more efficient and safer transportation modes.
Key Trends in the Market
Predictive maintenance refers to the maintenance strategy that uses machine learning algorithms to interpret data from sensors, and equipment logs to predict when the vehicle is likely to fail. Predictive maintenance allows for remote diagnosis of potential problems associated with vehicles before they give rise to major breakdowns.
The EMR’s report titled “Automotive Predictive Maintenance Market Report and Forecast 2025-2034” offers a detailed analysis of the market based on the following segments:
Market Breakup by Component:
As per the automotive predictive maintenance market analysis, the data sciences used in the technology act as essential tools for failure prediction to identify potential errors, prevent failures from occurring, and lower maintenance costs of engines.
The proactive approach of predictive maintenance results in cost savings, as it identifies and corrects potential engine issues before they lead to downtime and significant financial losses for vehicle owners, fleet operators, and manufacturers.
Proactive alerts and early warnings increase the lifespan of the vehicles. Manufacturers benefit as it enables proactive communication with automobile owners, reducing breakdowns and thereby improving customer satisfaction.
Market Share by Region
Europe holds a significant portion of the global automotive predictive maintenance market share. The market is driven by the dynamic automotive sector in Europe. Technological advancements in the automotive sector, along with favourable government initiatives promoting the safety of vehicles and emission reduction, are contributing to the growth of the market in the region.
Competitive Landscape
The comprehensive EMR report provides an in-depth assessment of the market based on the Porter's five forces model along with giving a SWOT analysis. The report gives a detailed analysis of the following key players in the global automotive predictive maintenance market, covering their competitive landscape and latest developments like mergers, acquisitions, investments and expansion plans.
Siemens Aktiengesellschaft
Siemens Aktiengesellschaft, founded in 1847, is a technology company focused on sectors like infrastructure, transport, and healthcare. The company combines industrial artificial intelligence and connectivity with expert services for predictive services for drive systems.
Continental AG
Continental AG is a German multinational automotive parts manufacturing company. The company provides its products and solutions to sectors such as passenger cars, trucks and buses, two-wheelers, agriculture, construction and mining, continental automotive, material handling, and railway.
ZF Friedrichshafen AG
ZF Friedrichshafen AG, based in Germany, is a global technology company engaged in providing mobility systems for passenger cars, commercial vehicles, and industrial technology. The company provides fleet management solutions for maximising vehicle safety.
Other players operating in the global automotive predictive maintenance market include IBM Corporation, Robert Bosch GmbH, Hitachi, Ltd., Samsung Electronics Co. Ltd. (Harman International), SAP SE, Aptiv PLC, and Garrett Motion Inc., among others.
Key Trends in the Market
Predictive maintenance refers to the maintenance strategy that uses machine learning algorithms to interpret data from sensors, and equipment logs to predict when the vehicle is likely to fail. Predictive maintenance allows for remote diagnosis of potential problems associated with vehicles before they give rise to major breakdowns.
- The emergence of digital twins is transforming the automotive predictive maintenance market growth. Digital twins offer a real-time view of the performance and health of specific components in the vehicle. Through analysing data obtained from sensors integrated into vehicles, manufacturers can predict potential issues and take proactive measures to minimise downtime, thereby avoiding costly repairs.
- The rising need for safer and more efficient transportation, in addition to advancements in technology, is catering to the demand for autonomous vehicles. The surge in the demand for autonomous vehicles is also anticipated to support the growth of the automotive predictive maintenance market demand in the coming years.
- The incorporation of predictive maintenance technology in automobiles enables constant monitoring for abnormal vibrations, temperature variations, and fluid leaks, further ensuring that potential issues compromising vehicle safety and security are detected on time. Thus, predictive maintenance ensures the security of both the vehicle and its occupants.
The EMR’s report titled “Automotive Predictive Maintenance Market Report and Forecast 2025-2034” offers a detailed analysis of the market based on the following segments:
Market Breakup by Component:
- Solution
- Services
- Passenger Car
- Commercial Vehicle
- Engine Performance
- Exhaust System
- Transmission Function
- Structural Stability
- Personal Use
- Commercial Use
- North America
- Europe
- Asia Pacific
- Latin America
- Middle East and Africa
As per the automotive predictive maintenance market analysis, the data sciences used in the technology act as essential tools for failure prediction to identify potential errors, prevent failures from occurring, and lower maintenance costs of engines.
The proactive approach of predictive maintenance results in cost savings, as it identifies and corrects potential engine issues before they lead to downtime and significant financial losses for vehicle owners, fleet operators, and manufacturers.
Proactive alerts and early warnings increase the lifespan of the vehicles. Manufacturers benefit as it enables proactive communication with automobile owners, reducing breakdowns and thereby improving customer satisfaction.
Market Share by Region
Europe holds a significant portion of the global automotive predictive maintenance market share. The market is driven by the dynamic automotive sector in Europe. Technological advancements in the automotive sector, along with favourable government initiatives promoting the safety of vehicles and emission reduction, are contributing to the growth of the market in the region.
Competitive Landscape
The comprehensive EMR report provides an in-depth assessment of the market based on the Porter's five forces model along with giving a SWOT analysis. The report gives a detailed analysis of the following key players in the global automotive predictive maintenance market, covering their competitive landscape and latest developments like mergers, acquisitions, investments and expansion plans.
Siemens Aktiengesellschaft
Siemens Aktiengesellschaft, founded in 1847, is a technology company focused on sectors like infrastructure, transport, and healthcare. The company combines industrial artificial intelligence and connectivity with expert services for predictive services for drive systems.
Continental AG
Continental AG is a German multinational automotive parts manufacturing company. The company provides its products and solutions to sectors such as passenger cars, trucks and buses, two-wheelers, agriculture, construction and mining, continental automotive, material handling, and railway.
ZF Friedrichshafen AG
ZF Friedrichshafen AG, based in Germany, is a global technology company engaged in providing mobility systems for passenger cars, commercial vehicles, and industrial technology. The company provides fleet management solutions for maximising vehicle safety.
Other players operating in the global automotive predictive maintenance market include IBM Corporation, Robert Bosch GmbH, Hitachi, Ltd., Samsung Electronics Co. Ltd. (Harman International), SAP SE, Aptiv PLC, and Garrett Motion Inc., among others.
Table of Contents
176 Pages
- 1 Executive Summary
- 1.1 Market Size 2024-2025
- 1.2 Market Growth 2025(F)-2034(F)
- 1.3 Key Demand Drivers
- 1.4 Key Players and Competitive Structure
- 1.5 Industry Best Practices
- 1.6 Recent Trends and Developments
- 1.7 Industry Outlook
- 2 Market Overview and Stakeholder Insights
- 2.1 Market Trends
- 2.2 Key Verticals
- 2.3 Key Regions
- 2.4 Supplier Power
- 2.5 Buyer Power
- 2.6 Key Market Opportunities and Risks
- 2.7 Key Initiatives by Stakeholders
- 3 Economic Summary
- 3.1 GDP Outlook
- 3.2 GDP Per Capita Growth
- 3.3 Inflation Trends
- 3.4 Democracy Index
- 3.5 Gross Public Debt Ratios
- 3.6 Balance of Payment (BoP) Position
- 3.7 Population Outlook
- 3.8 Urbanisation Trends
- 4 Country Risk Profiles
- 4.1 Country Risk
- 4.2 Business Climate
- 5 Global Automotive Predictive Maintenance Market Analysis
- 5.1 Key Industry Highlights
- 5.2 Global Automotive Predictive Maintenance Historical Market (2018-2024)
- 5.3 Global Automotive Predictive Maintenance Market Forecast (2025-2034)
- 5.4 Global Automotive Predictive Maintenance Market by Component
- 5.4.1 Solution
- 5.4.1.1 Historical Trend (2018-2024)
- 5.4.1.2 Forecast Trend (2025-2034)
- 5.4.2 Services
- 5.4.2.1 Historical Trend (2018-2024)
- 5.4.2.2 Forecast Trend (2025-2034)
- 5.5 Global Automotive Predictive Maintenance Market by Vehicle Type
- 5.5.1 Passenger Car
- 5.5.1.1 Historical Trend (2018-2024)
- 5.5.1.2 Forecast Trend (2025-2034)
- 5.5.2 Commercial Vehicle
- 5.5.2.1 Historical Trend (2018-2024)
- 5.5.2.2 Forecast Trend (2025-2034)
- 5.6 Global Automotive Predictive Maintenance Market by Application
- 5.6.1 Engine Performance
- 5.6.1.1 Historical Trend (2018-2024)
- 5.6.1.2 Forecast Trend (2025-2034)
- 5.6.2 Exhaust System
- 5.6.2.1 Historical Trend (2018-2024)
- 5.6.2.2 Forecast Trend (2025-2034)
- 5.6.3 Transmission Function
- 5.6.3.1 Historical Trend (2018-2024)
- 5.6.3.2 Forecast Trend (2025-2034)
- 5.6.4 Structural Stability
- 5.6.4.1 Historical Trend (2018-2024)
- 5.6.4.2 Forecast Trend (2025-2034)
- 5.7 Global Automotive Predictive Maintenance Market by End Use
- 5.7.1 Personal Use
- 5.7.1.1 Historical Trend (2018-2024)
- 5.7.1.2 Forecast Trend (2025-2034)
- 5.7.2 Commercial Use
- 5.7.2.1 Historical Trend (2018-2024)
- 5.7.2.2 Forecast Trend (2025-2034)
- 5.8 Global Automotive Predictive Maintenance Market by Region
- 5.8.1 North America
- 5.8.1.1 Historical Trend (2018-2024)
- 5.8.1.2 Forecast Trend (2025-2034)
- 5.8.2 Europe
- 5.8.2.1 Historical Trend (2018-2024)
- 5.8.2.2 Forecast Trend (2025-2034)
- 5.8.3 Asia Pacific
- 5.8.3.1 Historical Trend (2018-2024)
- 5.8.3.2 Forecast Trend (2025-2034)
- 5.8.4 Latin America
- 5.8.4.1 Historical Trend (2018-2024)
- 5.8.4.2 Forecast Trend (2025-2034)
- 5.8.5 Middle East and Africa
- 5.8.5.1 Historical Trend (2018-2024)
- 5.8.5.2 Forecast Trend (2025-2034)
- 6 North America Automotive Predictive Maintenance Market Analysis
- 6.1 United States of America
- 6.1.1 Historical Trend (2018-2024)
- 6.1.2 Forecast Trend (2025-2034)
- 6.2 Canada
- 6.2.1 Historical Trend (2018-2024)
- 6.2.2 Forecast Trend (2025-2034)
- 7 Europe Automotive Predictive Maintenance Market Analysis
- 7.1 United Kingdom
- 7.1.1 Historical Trend (2018-2024)
- 7.1.2 Forecast Trend (2025-2034)
- 7.2 Germany
- 7.2.1 Historical Trend (2018-2024)
- 7.2.2 Forecast Trend (2025-2034)
- 7.3 France
- 7.3.1 Historical Trend (2018-2024)
- 7.3.2 Forecast Trend (2025-2034)
- 7.4 Italy
- 7.4.1 Historical Trend (2018-2024)
- 7.4.2 Forecast Trend (2025-2034)
- 7.5 Others
- 8 Asia Pacific Automotive Predictive Maintenance Market Analysis
- 8.1 China
- 8.1.1 Historical Trend (2018-2024)
- 8.1.2 Forecast Trend (2025-2034)
- 8.2 Japan
- 8.2.1 Historical Trend (2018-2024)
- 8.2.2 Forecast Trend (2025-2034)
- 8.3 India
- 8.3.1 Historical Trend (2018-2024)
- 8.3.2 Forecast Trend (2025-2034)
- 8.4 ASEAN
- 8.4.1 Historical Trend (2018-2024)
- 8.4.2 Forecast Trend (2025-2034)
- 8.5 Australia
- 8.5.1 Historical Trend (2018-2024)
- 8.5.2 Forecast Trend (2025-2034)
- 8.6 Others
- 9 Latin America Automotive Predictive Maintenance Market Analysis
- 9.1 Brazil
- 9.1.1 Historical Trend (2018-2024)
- 9.1.2 Forecast Trend (2025-2034)
- 9.2 Argentina
- 9.2.1 Historical Trend (2018-2024)
- 9.2.2 Forecast Trend (2025-2034)
- 9.3 Mexico
- 9.3.1 Historical Trend (2018-2024)
- 9.3.2 Forecast Trend (2025-2034)
- 9.4 Others
- 10 Middle East and Africa Automotive Predictive Maintenance Market Analysis
- 10.1 Saudi Arabia
- 10.1.1 Historical Trend (2018-2024)
- 10.1.2 Forecast Trend (2025-2034)
- 10.2 United Arab Emirates
- 10.2.1 Historical Trend (2018-2024)
- 10.2.2 Forecast Trend (2025-2034)
- 10.3 Nigeria
- 10.3.1 Historical Trend (2018-2024)
- 10.3.2 Forecast Trend (2025-2034)
- 10.4 South Africa
- 10.4.1 Historical Trend (2018-2024)
- 10.4.2 Forecast Trend (2025-2034)
- 10.5 Others
- 11 Market Dynamics
- 11.1 SWOT Analysis
- 11.1.1 Strengths
- 11.1.2 Weaknesses
- 11.1.3 Opportunities
- 11.1.4 Threats
- 11.2 Porter’s Five Forces Analysis
- 11.2.1 Supplier’s Power
- 11.2.2 Buyer’s Power
- 11.2.3 Threat of New Entrants
- 11.2.4 Degree of Rivalry
- 11.2.5 Threat of Substitutes
- 11.3 Key Indicators for Demand
- 11.4 Key Indicators for Price
- 12 Competitive Landscape
- 12.1 Supplier Selection
- 12.2 Key Global Players
- 12.3 Key Regional Players
- 12.4 Key Player Strategies
- 12.5 Company Profiles
- 12.5.1 Siemens Aktiengesellschaft
- 12.5.1.1 Company Overview
- 12.5.1.2 Product Portfolio
- 12.5.1.3 Demographic Reach and Achievements
- 12.5.1.4 Certifications
- 12.5.2 IBM Corporation
- 12.5.2.1 Company Overview
- 12.5.2.2 Product Portfolio
- 12.5.2.3 Demographic Reach and Achievements
- 12.5.2.4 Certifications
- 12.5.3 Continental AG
- 12.5.3.1 Company Overview
- 12.5.3.2 Product Portfolio
- 12.5.3.3 Demographic Reach and Achievements
- 12.5.3.4 Certifications
- 12.5.4 ZF Friedrichshafen AG
- 12.5.4.1 Company Overview
- 12.5.4.2 Product Portfolio
- 12.5.4.3 Demographic Reach and Achievements
- 12.5.4.4 Certifications
- 12.5.5 Robert Bosch GmbH
- 12.5.5.1 Company Overview
- 12.5.5.2 Product Portfolio
- 12.5.5.3 Demographic Reach and Achievements
- 12.5.5.4 Certifications
- 12.5.6 Hitachi, Ltd.
- 12.5.6.1 Company Overview
- 12.5.6.2 Product Portfolio
- 12.5.6.3 Demographic Reach and Achievements
- 12.5.6.4 Certifications
- 12.5.7 Samsung Electronics Co. Ltd. (Harman International)
- 12.5.7.1 Company Overview
- 12.5.7.2 Product Portfolio
- 12.5.7.3 Demographic Reach and Achievements
- 12.5.7.4 Certifications
- 12.5.8 SAP SE
- 12.5.8.1 Company Overview
- 12.5.8.2 Product Portfolio
- 12.5.8.3 Demographic Reach and Achievements
- 12.5.8.4 Certifications
- 12.5.9 Aptiv PLC
- 12.5.9.1 Company Overview
- 12.5.9.2 Product Portfolio
- 12.5.9.3 Demographic Reach and Achievements
- 12.5.9.4 Certifications
- 12.5.10 Garrett Motion Inc.
- 12.5.10.1 Company Overview
- 12.5.10.2 Product Portfolio
- 12.5.10.3 Demographic Reach and Achievements
- 12.5.10.4 Certifications
- 12.5.11 Others
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.