Global Automated Machine Learning (AutoML) Market Research Report 2025(Status and Outlook)

Report Overview

Automated Machine Learning (AutoML) refers to the process of automating the end-to-end process of applying machine learning to real-world problems. It involves automating the tasks of data preprocessing, feature engineering, model selection, and hyperparameter tuning, thereby enabling users with limited machine learning expertise to build high-performing models efficiently. AutoML platforms typically utilize techniques such as neural architecture search, reinforcement learning, and Bayesian optimization to automate the model building process. By democratizing machine learning, AutoML aims to make it more accessible to a broader audience, including business analysts, domain experts, and non-expert users.

The market for Automated Machine Learning (AutoML) is experiencing significant growth driven by several key factors. Firstly, the increasing demand for machine learning solutions across industries is fueling the adoption of AutoML platforms as they offer a faster and more cost-effective way to develop machine learning models. Secondly, the shortage of skilled data scientists and machine learning experts is driving organizations to turn to AutoML tools to bridge the talent gap and accelerate their machine learning initiatives. Additionally, the advancements in artificial intelligence and automation technologies are further propelling the development and adoption of AutoML solutions, making it easier for organizations to leverage the power of machine learning in their operations.

At the same time, the market for AutoML is witnessing a shift towards more specialized and industry-specific solutions to cater to the unique needs and requirements of different sectors. This trend is driven by the recognition that one-size-fits-all AutoML platforms may not always deliver optimal results for specific use cases or industries. As a result, vendors are increasingly focusing on developing industry-specific AutoML solutions tailored to domains such as healthcare, finance, retail, and manufacturing. This trend is expected to continue as organizations seek more customized and effective machine learning solutions to address their specific business challenges and opportunities.

The global Automated Machine Learning (AutoML) market size was estimated at USD 56.27 million in 2024 and is projected to reach USD 78.20 million by 2033, exhibiting a CAGR of 4.20% during the forecast period.

This report provides a deep insight into the global Automated Machine Learning (AutoML) market covering all its essential aspects. This ranges from a macro overview of the market to micro details of the market size, competitive landscape, development trend, niche market, key market drivers and challenges, SWOT analysis, Porter's five forces analysis, value chain analysis, PEST analysis, etc.

The analysis helps the reader to shape the competition within the industries and strategies for the competitive environment to enhance the potential profit. Furthermore, it provides a simple framework for evaluating and accessing the position of the business organization. The report structure also focuses on the competitive landscape of the Global Automated Machine Learning (AutoML) Market, this report introduces in detail the market share, market performance, product situation, operation situation, etc. of the main players, which helps the readers in the industry to identify the main competitors and deeply understand the competition pattern of the market.

In a word, this report is a must-read for industry players, investors, researchers, consultants, business strategists, and all those who have any kind of stake or are planning to foray into the Automated Machine Learning (AutoML) market in any manner.

Global Automated Machine Learning (AutoML) Market: Market Segmentation Analysis

The research report includes specific segments by region (country), manufacturers, Type, and Application. Market segmentation creates subsets of a market based on product type, end-user or application, Geographic, and other factors. By understanding the market segments, the decision-maker can leverage this targeting in the product, sales, and marketing strategies. Market segments can power your product development cycles by informing how you create product offerings for different segments.

Key Company

Amazon Web Services Inc.

DataRobot

EdgeVerve Systems Limited

H20.ai Inc.

IBM

JADBio - Gnosis DA S.A.

QlikTech International AB

Auger

Google

Microsoft

SAS Institute lnc.

Market Segmentation (by Type)

Platform

Service

Market Segmentation (by Application)

Large Enterprise

SMEs

Geographic Segmentation

North America (USA, Canada, Mexico)

Europe (Germany, UK, France, Russia, Italy, Rest of Europe)

Asia-Pacific (China, Japan, South Korea, India, Southeast Asia, Rest of Asia-Pacific)

South America (Brazil, Argentina, Columbia, Rest of South America)

The Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria, South Africa, Rest of MEA)

Key Benefits of This Market Research:

Industry drivers, restraints, and opportunities covered in the study

Neutral perspective on the market performance

Recent industry trends and developments

Competitive landscape & strategies of key players

Potential & niche segments and regions exhibiting promising growth covered

Historical, current, and projected market size, in terms of value

In-depth analysis of the Automated Machine Learning (AutoML) Market

Overview of the regional outlook of the Automated Machine Learning (AutoML) Market:

Key Reasons to Buy this Report:

Access to date statistics compiled by our researchers. These provide you with historical and forecast data, which is analyzed to tell you why your market is set to change

This enables you to anticipate market changes to remain ahead of your competitors

You will be able to copy data from the Excel spreadsheet straight into your marketing plans, business presentations, or other strategic documents

The concise analysis, clear graph, and table format will enable you to pinpoint the information you require quickly

Provision of market value data for each segment and sub-segment

Indicates the region and segment that is expected to witness the fastest growth as well as to dominate the market

Analysis by geography highlighting the consumption of the product/service in the region as well as indicating the factors that are affecting the market within each region

Competitive landscape which incorporates the market ranking of the major players, along with new service/product launches, partnerships, business expansions, and acquisitions in the past five years of companies profiled

Extensive company profiles comprising of company overview, company insights, product benchmarking, and SWOT analysis for the major market players

The current as well as the future market outlook of the industry concerning recent developments which involve growth opportunities and drivers as well as challenges and restraints of both emerging as well as developed regions

Includes in-depth analysis of the market from various perspectives through Porter’s five forces analysis

Provides insight into the market through Value Chain

Market dynamics scenario, along with growth opportunities of the market in the years to come

Chapter Outline

Chapter 1 mainly introduces the statistical scope of the report, market division standards, and market research methods.

Chapter 2 is an executive summary of different market segments (by region, product type, application, etc), including the market size of each market segment, future development potential, and so on. It offers a high-level view of the current state of the Automated Machine Learning (AutoML) Market and its likely evolution in the short to mid-term, and long term.

Chapter 3 makes a detailed analysis of the market's competitive landscape of the market and provides the market share, capacity, output, price, latest development plan, merger, and acquisition information of the main manufacturers in the market.

Chapter 4 is the analysis of the whole market industrial chain, including the upstream and downstream of the industry, as well as Porter's five forces analysis.

Chapter 5 introduces the latest developments of the market, the driving factors and restrictive factors of the market, the challenges and risks faced by manufacturers in the industry, and the analysis of relevant policies in the industry.

Chapter 6 provides the analysis of various market segments according to product types, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different market segments.

Chapter 7 provides the analysis of various market segments according to application, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.

Chapter 8 provides a quantitative analysis of the market size and development potential of each region from the consumer side and its main countries and introduces the market development, future development prospects, market space, and capacity of each country in the world.

Chapter 9 shares the main producing countries of Automated Machine Learning (AutoML), their output value, profit level, regional supply, production capacity layout, etc. from the supply side.

Chapter 10 introduces the basic situation of the main companies in the market in detail, including product sales revenue, sales volume, price, gross profit margin, market share, product introduction, recent development, etc.

Chapter 11 provides a quantitative analysis of the market size and development potential of each region during the forecast period.

Chapter 12 provides a quantitative analysis of the market size and development potential of each market segment during the forecast period.

Chapter 13 is the main points and conclusions of the report.


1 Research Methodology and Statistical Scope
1.1 Market Definition and Statistical Scope of Automated Machine Learning (AutoML)
1.2 Key Market Segments
1.2.1 Automated Machine Learning (AutoML) Segment by Type
1.2.2 Automated Machine Learning (AutoML) Segment by Application
1.3 Methodology & Sources of Information
1.3.1 Research Methodology
1.3.2 Research Process
1.3.3 Market Breakdown and Data Triangulation
1.3.4 Base Year
1.3.5 Report Assumptions & Caveats
2 Automated Machine Learning (AutoML) Market Overview
2.1 Global Market Overview
2.2 Market Segment Executive Summary
2.3 Global Market Size by Region
3 Automated Machine Learning (AutoML) Market Competitive Landscape
3.1 Company Assessment Quadrant
3.2 Global Automated Machine Learning (AutoML) Product Life Cycle
3.3 Global Automated Machine Learning (AutoML) Revenue Market Share by Company (2020-2025)
3.4 Automated Machine Learning (AutoML) Market Share by Company Type (Tier 1, Tier 2, and Tier 3)
3.5 Automated Machine Learning (AutoML) Company Headquarters, Area Served, Product Type
3.6 Automated Machine Learning (AutoML) Market Competitive Situation and Trends
3.6.1 Automated Machine Learning (AutoML) Market Concentration Rate
3.6.2 Global 5 and 10 Largest Automated Machine Learning (AutoML) Players Market Share by Revenue
3.6.3 Mergers & Acquisitions, Expansion
4 Automated Machine Learning (AutoML) Value Chain Analysis
4.1 Automated Machine Learning (AutoML) Value Chain Analysis
4.2 Midstream Market Analysis
4.3 Downstream Customer Analysis
5 The Development and Dynamics of Automated Machine Learning (AutoML) Market
5.1 Key Development Trends
5.2 Driving Factors
5.3 Market Challenges
5.4 Market Restraints
5.5 Industry News
5.5.1 New Product Developments
5.5.2 Mergers & Acquisitions
5.5.3 Expansions
5.5.4 Collaboration/Supply Contracts
5.6 PEST Analysis
5.6.1 Industry Policies Analysis
5.6.2 Economic Environment Analysis
5.6.3 Social Environment Analysis
5.6.4 Technological Environment Analysis
5.7 Global Automated Machine Learning (AutoML) Market Porter's Five Forces Analysis
6 Automated Machine Learning (AutoML) Market Segmentation by Type
6.1 Evaluation Matrix of Segment Market Development Potential (Type)
6.2 Global Automated Machine Learning (AutoML) Market Size Market Share by Type (2020-2025)
6.3 Global Automated Machine Learning (AutoML) Market Size Growth Rate by Type (2021-2025)
7 Automated Machine Learning (AutoML) Market Segmentation by Application
7.1 Evaluation Matrix of Segment Market Development Potential (Application)
7.2 Global Automated Machine Learning (AutoML) Market Size (M USD) by Application (2020-2025)
7.3 Global Automated Machine Learning (AutoML) Sales Growth Rate by Application (2020-2025)
8 Automated Machine Learning (AutoML) Market Segmentation by Region
8.1 Global Automated Machine Learning (AutoML) Market Size by Region
8.1.1 Global Automated Machine Learning (AutoML) Market Size by Region
8.1.2 Global Automated Machine Learning (AutoML) Market Size Market Share by Region
8.2 North America
8.2.1 North America Automated Machine Learning (AutoML) Market Size by Country
8.2.2 U.S.
8.2.3 Canada
8.2.4 Mexico
8.3 Europe
8.3.1 Europe Automated Machine Learning (AutoML) Market Size by Country
8.3.2 Germany
8.3.3 France
8.3.4 U.K.
8.3.5 Italy
8.3.6 Russia
8.4 Asia Pacific
8.4.1 Asia Pacific Automated Machine Learning (AutoML) Market Size by Region
8.4.2 China
8.4.3 Japan
8.4.4 South Korea
8.4.5 India
8.4.6 Southeast Asia
8.5 South America
8.5.1 South America Automated Machine Learning (AutoML) Market Size by Country
8.5.2 Brazil
8.5.3 Argentina
8.5.4 Columbia
8.6 Middle East and Africa
8.6.1 Middle East and Africa Automated Machine Learning (AutoML) Market Size by Region
8.6.2 Saudi Arabia
8.6.3 UAE
8.6.4 Egypt
8.6.5 Nigeria
8.6.6 South Africa
9 Key Companies Profile
9.1 Amazon Web Services Inc.
9.1.1 Amazon Web Services Inc. Basic Information
9.1.2 Amazon Web Services Inc. Automated Machine Learning (AutoML) Product Overview
9.1.3 Amazon Web Services Inc. Automated Machine Learning (AutoML) Product Market Performance
9.1.4 Amazon Web Services Inc. Automated Machine Learning (AutoML) SWOT Analysis
9.1.5 Amazon Web Services Inc. Business Overview
9.1.6 Amazon Web Services Inc. Recent Developments
9.2 DataRobot
9.2.1 DataRobot Basic Information
9.2.2 DataRobot Automated Machine Learning (AutoML) Product Overview
9.2.3 DataRobot Automated Machine Learning (AutoML) Product Market Performance
9.2.4 DataRobot Automated Machine Learning (AutoML) SWOT Analysis
9.2.5 DataRobot Business Overview
9.2.6 DataRobot Recent Developments
9.3 EdgeVerve Systems Limited
9.3.1 EdgeVerve Systems Limited Basic Information
9.3.2 EdgeVerve Systems Limited Automated Machine Learning (AutoML) Product Overview
9.3.3 EdgeVerve Systems Limited Automated Machine Learning (AutoML) Product Market Performance
9.3.4 EdgeVerve Systems Limited Automated Machine Learning (AutoML) SWOT Analysis
9.3.5 EdgeVerve Systems Limited Business Overview
9.3.6 EdgeVerve Systems Limited Recent Developments
9.4 H20.ai Inc.
9.4.1 H20.ai Inc. Basic Information
9.4.2 H20.ai Inc. Automated Machine Learning (AutoML) Product Overview
9.4.3 H20.ai Inc. Automated Machine Learning (AutoML) Product Market Performance
9.4.4 H20.ai Inc. Business Overview
9.4.5 H20.ai Inc. Recent Developments
9.5 IBM
9.5.1 IBM Basic Information
9.5.2 IBM Automated Machine Learning (AutoML) Product Overview
9.5.3 IBM Automated Machine Learning (AutoML) Product Market Performance
9.5.4 IBM Business Overview
9.5.5 IBM Recent Developments
9.6 JADBio - Gnosis DA S.A.
9.6.1 JADBio - Gnosis DA S.A. Basic Information
9.6.2 JADBio - Gnosis DA S.A. Automated Machine Learning (AutoML) Product Overview
9.6.3 JADBio - Gnosis DA S.A. Automated Machine Learning (AutoML) Product Market Performance
9.6.4 JADBio - Gnosis DA S.A. Business Overview
9.6.5 JADBio - Gnosis DA S.A. Recent Developments
9.7 QlikTech International AB
9.7.1 QlikTech International AB Basic Information
9.7.2 QlikTech International AB Automated Machine Learning (AutoML) Product Overview
9.7.3 QlikTech International AB Automated Machine Learning (AutoML) Product Market Performance
9.7.4 QlikTech International AB Business Overview
9.7.5 QlikTech International AB Recent Developments
9.8 Auger
9.8.1 Auger Basic Information
9.8.2 Auger Automated Machine Learning (AutoML) Product Overview
9.8.3 Auger Automated Machine Learning (AutoML) Product Market Performance
9.8.4 Auger Business Overview
9.8.5 Auger Recent Developments
9.9 Google
9.9.1 Google Basic Information
9.9.2 Google Automated Machine Learning (AutoML) Product Overview
9.9.3 Google Automated Machine Learning (AutoML) Product Market Performance
9.9.4 Google Business Overview
9.9.5 Google Recent Developments
9.10 Microsoft
9.10.1 Microsoft Basic Information
9.10.2 Microsoft Automated Machine Learning (AutoML) Product Overview
9.10.3 Microsoft Automated Machine Learning (AutoML) Product Market Performance
9.10.4 Microsoft Business Overview
9.10.5 Microsoft Recent Developments
9.11 SAS Institute lnc.
9.11.1 SAS Institute lnc. Basic Information
9.11.2 SAS Institute lnc. Automated Machine Learning (AutoML) Product Overview
9.11.3 SAS Institute lnc. Automated Machine Learning (AutoML) Product Market Performance
9.11.4 SAS Institute lnc. Business Overview
9.11.5 SAS Institute lnc. Recent Developments
10 Automated Machine Learning (AutoML) Market Forecast by Region
10.1 Global Automated Machine Learning (AutoML) Market Size Forecast
10.2 Global Automated Machine Learning (AutoML) Market Forecast by Region
10.2.1 North America Market Size Forecast by Country
10.2.2 Europe Automated Machine Learning (AutoML) Market Size Forecast by Country
10.2.3 Asia Pacific Automated Machine Learning (AutoML) Market Size Forecast by Region
10.2.4 South America Automated Machine Learning (AutoML) Market Size Forecast by Country
10.2.5 Middle East and Africa Forecasted Sales of Automated Machine Learning (AutoML) by Country
11 Forecast Market by Type and by Application (2026-2033)
11.1 Global Automated Machine Learning (AutoML) Market Forecast by Type (2026-2033)
11.2 Global Automated Machine Learning (AutoML) Market Forecast by Application (2026-2033)
12 Conclusion and Key Findings

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings