
The Generative AI Market – 1st Edition
Description
The Generative AI Market is a strategy report from Berg Insightanalysing the latest developments and trends in the generative AImarket. This strategic research report from Berg Insight providesyou with 90 pages of unique business intelligence including 5-yearindustry forecasts and expert commentary on which to base yourbusiness decisions.
Generative AI (GenAI) has popularly been compared to major technological breakthroughs suchas the printing press of the 15th century, the steam engine of the late 18th, electricity in the late19th and the emergence of the Internet in the late 20th. The GenAI hype is not without merit,since its ability to creatively generate convincingly human-like content makes it a disruptivetechnology with the potential to influence nearly every industry. Even though traditional AIsystems have been used commercially for many years, GenAI is a more novel practice thatenables computer systems to produce original content – including text, images, video, audioand software code – rather than merely analysing existing data or making predictions.
Before 2023, the use of GenAI technology was practically non-existent. The nascent market wasignited by the launch of OpenAI’s ChatGPT, which was the first widely adopted commercialproduct to bring GenAI to mainstream attention. Significant investments can since be observedfrom a diverse range of enterprises, spanning both startups and established technology giants,all trying to capitalise on the substantial market potential. However, due to the vast computationalresources required to train and run AI models, the market is primarily dominated by largetechnology conglomerates and companies that have managed to raise significant funding.
Berg Insight has identified 31 key foundation model providers spanning LLMs, vision, audio andmultimodal models. While many LLMs started as unimodal models, nearly all successful LLMsnow include multimodal capabilities. Companies with multimodal LLMs or successful cross-modal offerings include US-based Anthropic, Google, Meta, OpenAI, Upstage and xAI; China-based AI.01, Alibaba, Baichuan, Baidu, ByteDance, DeepSeek, MiniMax, Moonshot AI, Stepfun,Tencent and Z.ai; France-based Mistral AI; Canada-based Cohere and Israel-based AI21 Labs.Specialised vision model developers include US-based Luma AI, Midjourney, Pika and Runway;UK-based Recraft and Stability AI; Japan-based Black Forest Labs; Canada-based Ideogramand Chinese Kuaishou. Key audio specialists include US-based Assembly AI and ElevenLabs.
The ecosystem is supported by a host of development platform providers offering streamlinedenvironments and tools for building GenAI applications and models. In the US, these includeestablished cloud service providers like Microsoft, Google and AWS, as well as diversifiedtechnology companies such as IBM and Oracle. The landscape also includes hardwareproviders like Nvidia and SambaNova Systems, data platform specialists such as Databricks andSnowflake, model training and dataset platforms like Scale AI, the open-source model libraryfrom Hugging Face and other key players including C3.ai, Dataiku, Weights & Biases, Cloudera,Together AI, Domino and H2O.ai. Several European and Asian providers also contribute to the landscape, including Netherlands-based Nebius, Germany’s Aleph Alpha, and Chinese Alibaba,Baidu, ByteDance and Tencent.
The GenAI market grew substantially in 2024, experiencing triple-digit-growth rates in all threemajor segments spanning GenAI hardware, foundation models and development platforms.Hardware is currently the largest, led by Nvidia. It is driven by significant data centre investmentsby cloud service providers, with over US$ 400 billion in expected AI-related spending in 2025.However, there is a significant time lag before this infrastructure spend translates into revenuesfrom end-user AI applications. The market value for foundation models reached an estimatedUS$ 4.1 billion in 2024, excluding end-user applications such as ChatGPT. The figure primarilyincludes income through API services or license fees as the models are used on developmentplatforms. Meanwhile, the market value for GenAI development platforms reached an estimatedUS$ 17.0 billion. Furthermore, GPU-based hardware systems used for GenAI workloadsgenerated revenues of US$ 132.3 billion in 2024.
Before 2023, the use of GenAI technology was practically non-existent. The nascent market wasignited by the launch of OpenAI’s ChatGPT, which was the first widely adopted commercialproduct to bring GenAI to mainstream attention. Significant investments can since be observedfrom a diverse range of enterprises, spanning both startups and established technology giants,all trying to capitalise on the substantial market potential. However, due to the vast computationalresources required to train and run AI models, the market is primarily dominated by largetechnology conglomerates and companies that have managed to raise significant funding.
Berg Insight has identified 31 key foundation model providers spanning LLMs, vision, audio andmultimodal models. While many LLMs started as unimodal models, nearly all successful LLMsnow include multimodal capabilities. Companies with multimodal LLMs or successful cross-modal offerings include US-based Anthropic, Google, Meta, OpenAI, Upstage and xAI; China-based AI.01, Alibaba, Baichuan, Baidu, ByteDance, DeepSeek, MiniMax, Moonshot AI, Stepfun,Tencent and Z.ai; France-based Mistral AI; Canada-based Cohere and Israel-based AI21 Labs.Specialised vision model developers include US-based Luma AI, Midjourney, Pika and Runway;UK-based Recraft and Stability AI; Japan-based Black Forest Labs; Canada-based Ideogramand Chinese Kuaishou. Key audio specialists include US-based Assembly AI and ElevenLabs.
The ecosystem is supported by a host of development platform providers offering streamlinedenvironments and tools for building GenAI applications and models. In the US, these includeestablished cloud service providers like Microsoft, Google and AWS, as well as diversifiedtechnology companies such as IBM and Oracle. The landscape also includes hardwareproviders like Nvidia and SambaNova Systems, data platform specialists such as Databricks andSnowflake, model training and dataset platforms like Scale AI, the open-source model libraryfrom Hugging Face and other key players including C3.ai, Dataiku, Weights & Biases, Cloudera,Together AI, Domino and H2O.ai. Several European and Asian providers also contribute to the landscape, including Netherlands-based Nebius, Germany’s Aleph Alpha, and Chinese Alibaba,Baidu, ByteDance and Tencent.
The GenAI market grew substantially in 2024, experiencing triple-digit-growth rates in all threemajor segments spanning GenAI hardware, foundation models and development platforms.Hardware is currently the largest, led by Nvidia. It is driven by significant data centre investmentsby cloud service providers, with over US$ 400 billion in expected AI-related spending in 2025.However, there is a significant time lag before this infrastructure spend translates into revenuesfrom end-user AI applications. The market value for foundation models reached an estimatedUS$ 4.1 billion in 2024, excluding end-user applications such as ChatGPT. The figure primarilyincludes income through API services or license fees as the models are used on developmentplatforms. Meanwhile, the market value for GenAI development platforms reached an estimatedUS$ 17.0 billion. Furthermore, GPU-based hardware systems used for GenAI workloadsgenerated revenues of US$ 132.3 billion in 2024.
Table of Contents
- 1 Introduction
- 1.1 The AI taxonomy
- 1.1.1 Artificial intelligence
- 1.1.2 Machine learning
- 1.1.3 Deep learning
- 1.1.4 Generative AI
- 1.2 Generative AI architectures
- 1.2.1 Transformer-based language models
- 1.2.2 Diffusion models, VAEs and GANs
- 1.3 The generative AI technology stack
- 1.3.1 Foundation models
- 1.3.2 Databases
- 1.3.3 Hardware infrastructure
- 1.3.4 Development platforms
- 2 Market Analysis
- 2.1 The generative AI industry landscape
- 2.1.1 Foundation model providers
- 2.1.2 Development platform providers
- 2.1.3 GPU-based hardware providers
- 2.2 Market sizing and forecast
- 2.2.1 Market value for GenAI models and platforms
- 2.2.2 Market value for GenAI hardware
- 2.3 Solution provider market shares
- 2.3.1 The foundation model market
- 2.3.2 The development platform market
- 2.3.3 The GenAI hardware market
- 2.4 Foundation model benchmarks
- 2.5 GenAI in IoT
- 2.5.1 Generative AIoT use cases
- 2.5.2 Edge vs cloud deployments
- 2.5.3 AIoT solution providers
- 2.6 GenAI in telecom
- 2.6.1 AI-on-RAN
- 2.6.2 AI-for-RAN
- 2.6.3 AI-and-RAN
- 2.7 Market trends
- 2.7.1 The emergence of low-cost models and
- platforms from China
- 2.7.2Large regional differences in Gen AI developments
- 2.7.3 LLM providers suffer profitability issues
- 2.7.4 Telecoms providers invest in sovereign AI
- solutions
- 2.7.5 Moving away from tokenisation
- 2.7.6 Agentic AI gains traction
- 2.7.7 Physical AI nears breakthrough with GenAI
- 2.7.8 AI regulations affecting the GenAI market
- 3 Company Profiles and
- Strategies
- 3.1 01.AI
- 3.2 AI21 Labs
- 3.3 Aleph Alpha
- 3.4 Alibaba
- 3.5 Anthropic
- 3.6 Assembly AI
- 3.7 AWS
- 3.8 Baichuan
- 3.9 Baidu
- 3.10 ByteDance
- 3.11 C3 AI
- 3.12 Cohere
- 3.13 Databricks
- 3.14 Dataiku
- 3.15 DeepSeek
- 3.16 Domino
- 3.17 Elevenlabs
- 3.18 Google
- 3.19 H2O AI
- 3.20 Hugging Face
- 3.21 IBM
- 3.22 Luma AI
- 3.23 Mistral AI
- 3.24 Meta
- 3.25 Microsoft
- 3.26 MiniMax
- 3.27 Moonshot AI
- 3.28 Nebius
- 3.29 Nvidia
- 3.30 OpenAI
- 3.31 Oracle
- 3.32 Runway
- 3.33 SambaNova Systems
- 3.34 Scale AI
- 3.35 Stability AI
- 3.36 Snowflake
- 3.37 StepFun
- 3.38 Tencent
- 3.39 Together AI
- 3.40 Weights & Biases
- 3.41 xAI
- 3.42 Z.ai
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.