
AI Disruption: A Global Overview
Description
Report Scope
This report comprehensively analyzes how AI disrupts industries, organizations and societies across technological, operational, customer-facing and competitive dimensions. The study draws on global benchmarks, real-time applications and deep research from academic, corporate and policy institutions to define the evolving AI landscape. The report examines several vectors, including platform shifts involving AI-native architectures, generative AI, automation systems, robotics and data infrastructure. It examines the reengineering of internal workflows, supply chains, logistics and decision-making through intelligent automation and ML-based optimization. It also examines AI in user experience, personalization engines, predictive services, voice interfaces and AI agents.
The report focuses on the most AI-affected sectors globally, with real-world use cases and trend analysis in domains such as healthcare, finance and banking, manufacturing and supply chain, retail and e-commerce, education and edtech, transportation and logistics, media and entertainment, and other emerging sectors. The study also presents a regional landscape to identify AI leaders and late adopters. It maps the regional maturity, investment flows, talent ecosystems and policy environments in North America, Asia-Pacific, Europe and the Rest of the World (RoW).
The base year for the market study is 2024, with estimates and forecasts for 2025 through 2030. Market estimates are valued in U.S. dollars (millions). The study covers current market and technological conditions involving real-time case studies, implementation data and short-term trends. This is followed by forecast (2025 through 2030), including AI maturity roadmaps, workforce evolution, disruption inflection points, feedback from key industry players, investment trends and regulatory timelines.
Report Includes
An overview of the types of disruptions influenced by AI, e.g., technological, operational, customer-facing, or shifts in the competitive landscape
Information on operational disruptions, which focuses on how AI is changing core operations, workflows and supply chains
Discussion of the transformation or replacement of job functions, as well as shifts in the skill demand across various industries
Competitive disruption and market entry, i.e., lowering of market entry barriers due to AI
Analysis of disruption in customer experience and discussion of how AI is transforming user experience, personalization and customer support
Coverage of case studies of companies that have undergone major disruption due to AI adoption
Expert quotes on AI disruption from primary respondents
This report comprehensively analyzes how AI disrupts industries, organizations and societies across technological, operational, customer-facing and competitive dimensions. The study draws on global benchmarks, real-time applications and deep research from academic, corporate and policy institutions to define the evolving AI landscape. The report examines several vectors, including platform shifts involving AI-native architectures, generative AI, automation systems, robotics and data infrastructure. It examines the reengineering of internal workflows, supply chains, logistics and decision-making through intelligent automation and ML-based optimization. It also examines AI in user experience, personalization engines, predictive services, voice interfaces and AI agents.
The report focuses on the most AI-affected sectors globally, with real-world use cases and trend analysis in domains such as healthcare, finance and banking, manufacturing and supply chain, retail and e-commerce, education and edtech, transportation and logistics, media and entertainment, and other emerging sectors. The study also presents a regional landscape to identify AI leaders and late adopters. It maps the regional maturity, investment flows, talent ecosystems and policy environments in North America, Asia-Pacific, Europe and the Rest of the World (RoW).
The base year for the market study is 2024, with estimates and forecasts for 2025 through 2030. Market estimates are valued in U.S. dollars (millions). The study covers current market and technological conditions involving real-time case studies, implementation data and short-term trends. This is followed by forecast (2025 through 2030), including AI maturity roadmaps, workforce evolution, disruption inflection points, feedback from key industry players, investment trends and regulatory timelines.
Report Includes
An overview of the types of disruptions influenced by AI, e.g., technological, operational, customer-facing, or shifts in the competitive landscape
Information on operational disruptions, which focuses on how AI is changing core operations, workflows and supply chains
Discussion of the transformation or replacement of job functions, as well as shifts in the skill demand across various industries
Competitive disruption and market entry, i.e., lowering of market entry barriers due to AI
Analysis of disruption in customer experience and discussion of how AI is transforming user experience, personalization and customer support
Coverage of case studies of companies that have undergone major disruption due to AI adoption
Expert quotes on AI disruption from primary respondents
Table of Contents
85 Pages
- Chapter 1 Executive Summary
- Study Goals and Objectives
- Reasons for Doing This Study
- Scope of Report
- Chapter 2 Market Overview
- AI Disruption Overview
- Characteristics of AI Disruption
- Evolution of AI
- Historical Milestones
- Current State of AI (2025)
- AI Platform Shift
- Foundation Models
- Generative AI Revolution
- AI Beyond 2025
- Chapter 3 Type of Disruptions Influenced by AI
- Overview
- Technological Disruption
- Real-time Use Cases
- Operational Disruption
- Real-time Use Cases
- Customer-Facing Disruption
- Real-time Use Cases
- Competitive Landscape Shift
- Real-time Use Cases
- Chapter 4 Technological Disruptions
- Overview
- Key Trends in Technological Disruption
- Components of AI-Driven Technological Disruption
- Advanced ML and Deep Learning
- Generative AI
- Automation and Robotics
- Predictive Analytics
- Natural Language Processing (NLP)
- Edge and Cloud AI
- Rise of AI Marketplaces
- AI as a General-Purpose Technology
- Innovations in ML, NLP and Computer Vision
- AI's Transformative Impact on Product Development and R&D
- Chapter 5 Operational Disruptions
- Overview
- Key Trends in AI-Driven Operational Disruption
- Components of AI-Driven Operational Disruption
- Hyperautomation and Intelligent Workflow Orchestration
- Predictive and Prescriptive Analytics
- AI-Augmented Human Workforce
- Digital Twins and Real-Time Monitoring
- Dynamic Resource Allocation and Optimization
- Intelligent Decision Support System
- Process Automation
- Predictive Maintenance
- AI in Supply Chain and Logistics
- Types of Data in Supply Chain Management
- Challenges of AI in Supply Chain Management
- AI in ESG and Sustainable Operations Reporting
- Chapter 6 Customer-Facing Disruptions
- Overview
- Key Trends in AI-Driven Customer-Facing Disruptions
- Components of AI-Driven Customer-Facing Disruption
- Conversational AI and Virtual Assistants
- Visual Search and Recommendation Systems
- Predictive Customer Intelligence
- Emotion and Sentiment Recognition
- AI-Driven Personalization
- Experience Design Powered by Behavioral AI
- Immersive AI in AR/VR Commerce
- AI Impact on Digital Accessibility
- Chapter 7 Competitive Disruptions
- Overview
- Major Challenges with AI-driven Competitive Disruption
- Key Trends in AI-Driven Competitive Disruptions
- Components of AI-Driven Competitive Disruption
- AI-Native Business Models
- Proprietary Data and Network Effects
- Automation-Enabled Cost Leadership
- Platform Play and Ecosystem Monetization
- Role of Open-Source and AI Platforms
- AI Tools Lowering Barriers to Entry
- Startups vs. Incumbents
- AI as a Strategic Asset in M&A and Valuation
- Democratization of Innovation
- Market Shifts and Incumbent Challenges
- Chapter 8 AI Impact on Major Industries
- Overview
- AI Impact on Major Industries
- Healthcare
- Finance
- Manufacturing and Supply Chain
- Retail and E-commerce
- Education and Edtech
- Transportation and Logistics
- Media and Entertainment
- Others (Government Sectors, Infrastructure, Legal and Compliance)
- Chapter 9 AI Disruption in Major Regions
- Overview
- North America
- Europe
- Asia-Pacific
- Rest of the World
- Chapter 10 Case Studies of Disruptions
- Case Studies of Disruptions
- Healthcare
- Google DeepMind's AlphaFold
- Deep 6 AI Accelerating Clinical Trials
- AstraZeneca Revolutionizing Oncology with AI
- Roche Innovating Drug Discovery with AI
- Novartis Using AI in Drug Formulation
- Manufacturing and Supply Chain
- AI Transforms Amazon's Supply Chain
- Unilever Optimizing Supply Chain with AI
- Siemens Advancing Industrial Automation with AI
- General Electric Using AI to Optimize Energy Production
- Transportation and Logistics
- Tesla's Autonomous Vehicles
- Airbus Using AI for Aircraft Maintenance
- Ford Enhancing Driving Safety with AI
- Retail and E-commerce
- Zara Driving Retail with AI
- Stitch Fix Transforming the Future of Fashion Retail
- Salesforce Utilizing AI to Enhance Customer Relationship Management
- Procter & Gamble Incorporating AI in Consumer Goods Production
- Media and Entertainment
- Netflix Personalizing Entertainment with AI
- Baidu Facilitating Voice Recognition
- NVIDIA Utilizing AI to Enhance Gaming Graphics
- Finance and Banking
- American Express Using AI to Secure Transactions
- Other Sectors
- Blue River Technology Utilizing AI in Agriculture
- The Weather Company Utilizing AI to Predict Weather Patterns
- Cisco Using AI to Secure Networks
- Shell Using AI to Optimize Energy Resources
- Ukraine's AI-Powered Drone Strike Campaign
- Chapter 11 Expert Opinions
- Quotes from Primary Respondents and Domain Experts
- How AI is Disrupting the Manufacturing and Logistics Industry
- How AI is Disrupting the Education Industry
- How AI is Disrupting the Productivity Software Industry
- How AI is Disrupting the Publishing Industry
- Interview Highlights
- Manufacturing and logistics
- Education and Edtech
- Productivity
- Publishing
- Emerging Narratives in the AI Disruption Debate
- From Displacement to Augmentation
- AI as a General-Purpose Technology
- Ethical AI
- Global AI Race
- Democratization vs. Centralization
- Chapter 12 Future of AI Disruption
- Future of AI Disruption
- Forecasts and Predictions (2025-2030)
- Innovations
- Agentic AI
- Artificial General Intelligence (AGI)
- Neuromorphic AI
- Chapter 13 Appendix
- Methodology
- References
- Abbreviations
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.