Report cover image

Global Edge Machine Learning (Edge ML) Market Analysis and Forecast 2026-2032

Publisher APO Research, Inc.
Published Jan 06, 2026
Length 196 Pages
SKU # APRC20823957

Description

The global Edge Machine Learning (Edge ML) market is projected to grow from US$ million in 2026 to US$ million by 2032, at a Compound Annual Growth Rate (CAGR) of % during the forecast period.

The North America market for Edge Machine Learning (Edge ML) is estimated to increase from $ million in 2026 to reach $ million by 2032, at a CAGR of % during the forecast period of 2026 through 2032.

Europe market for Edge Machine Learning (Edge ML) is estimated to increase from $ million in 2026 to reach $ million by 2032, at a CAGR of % during the forecast period of 2026 through 2032.

Asia-Pacific market for Edge Machine Learning (Edge ML) is estimated to increase from $ million in 2026 to reach $ million by 2032, at a CAGR of % during the forecast period of 2026 through 2032.

The China market for Edge Machine Learning (Edge ML) is estimated to increase from $ million in 2026 to reach $ million by 2032, at a CAGR of % during the forecast period of 2026 through 2032.

The major global companies of Edge Machine Learning (Edge ML) include Microsoft, Edge Impulse, Imagimob, SensiML, Latent AI, Plumerai, DeGirum, NXP and Ekkono Solutions, etc. In 2025, the world's top three vendors accounted for approximately % of the revenue.

Report Includes

This report presents an overview of global market for Edge Machine Learning (Edge ML), market size. Analyses of the global market trends, with historic market revenue data for 2021 - 2025, estimates for 2026, and projections of CAGR through 2032.

This report researches the key producers of Edge Machine Learning (Edge ML), also provides the revenue of main regions and countries. Of the upcoming market potential for Edge Machine Learning (Edge ML), and key regions or countries of focus to forecast this market into various segments and sub-segments. Country specific data and market value analysis for the U.S., Canada, Mexico, Brazil, China, Japan, South Korea, Southeast Asia, India, Germany, the U.K., Italy, Middle East, Africa, and Other Countries.

This report focuses on the Edge Machine Learning (Edge ML) revenue, market share and industry ranking of main manufacturers, data from 2021 to 2026. Identification of the major stakeholders in the global Edge Machine Learning (Edge ML) market, and analysis of their competitive landscape and market positioning based on recent developments and segmental revenues. This report will help stakeholders to understand the competitive landscape and gain more insights and position their businesses and market strategies in a better way.

This report analyzes the segments data by Type and by Application, revenue, and growth rate, from 2021 to 2032. Evaluation and forecast the market size for Edge Machine Learning (Edge ML) revenue, projected growth trends, production technology, application and end-user industry.

Edge Machine Learning (Edge ML) Segment by Company

Microsoft
Edge Impulse
Imagimob
SensiML
Latent AI
Plumerai
DeGirum
NXP
Ekkono Solutions
Mjølner Informatics
STMicroelectronics

Edge Machine Learning (Edge ML) Segment by Type

Hardware
Software and Services

Edge Machine Learning (Edge ML) Segment by Application

Automotive
Manufacturing
Retail
Agriculture
Healthcare
Other

Edge Machine Learning (Edge ML) Segment by Region

North America
United States
Canada
Mexico
Europe
Germany
France
U.K.
Italy
Russia
Spain
Netherlands
Switzerland
Sweden
Poland
Asia-Pacific
China
Japan
South Korea
India
Australia
Taiwan
Southeast Asia
South America
Brazil
Argentina
Chile
Middle East & Africa
Egypt
South Africa
Israel
Türkiye
GCC Countries

Study Objectives

1. To analyze and research the global status and future forecast, involving growth rate (CAGR), market share, historical and forecast.
2. To present the key players, revenue, market share, and Recent Developments.
3. To split the breakdown data by regions, type, manufacturers, and Application.
4. To analyze the global and key regions market potential and advantage, opportunity and challenge, restraints, and risks.
5. To identify significant trends, drivers, influence factors in global and regions.
6. To analyze competitive developments such as expansions, agreements, new product launches, and acquisitions in the market.

Reasons to Buy This Report

1. This report will help the readers to understand the competition within the industries and strategies for the competitive environment to enhance the potential profit. The report also focuses on the competitive landscape of the global Edge Machine Learning (Edge ML) market, and introduces in detail the market share, industry ranking, competitor ecosystem, market performance, new product development, operation situation, expansion, and acquisition. etc. of the main players, which helps the readers to identify the main competitors and deeply understand the competition pattern of the market.
2. This report will help stakeholders to understand the global industry status and trends of Edge Machine Learning (Edge ML) and provides them with information on key market drivers, restraints, challenges, and opportunities.
3. This report will help stakeholders to understand competitors better and gain more insights to strengthen their position in their businesses. The competitive landscape section includes the market share and rank (in market size), competitor ecosystem, new product development, expansion, and acquisition.
4. This report stays updated with novel technology integration, features, and the latest developments in the market.
5. This report helps stakeholders to gain insights into which regions to target globally.
6. This report helps stakeholders to gain insights into the end-user perception concerning the adoption of Edge Machine Learning (Edge ML).
7. This report helps stakeholders to identify some of the key players in the market and understand their valuable contribution.

Chapter Outline

Chapter 1: Introduces the report scope of the report, executive summary of different market segments (product type, application, etc), including the market size of each market segment, future development potential, and so on. It offers a high-level view of the current state of the market and its likely evolution in the short to mid-term, and long term.
Chapter 2: Introduces the market dynamics, latest developments of the market, the driving factors and restrictive factors of the market, the challenges and risks faced by manufacturers in the industry, and the analysis of relevant policies in the industry.
Chapter 3: Revenue of Edge Machine Learning (Edge ML) in global and regional level. It provides a quantitative analysis of the market size and development potential of each region and its main countries and introduces the market development, future development prospects, market space, and capacity of each country in the world.
Chapter 4: Detailed analysis of Edge Machine Learning (Edge ML) company competitive landscape, revenue, market share and industry ranking, latest development plan, merger, and acquisition information, etc.
Chapter 5: Provides the analysis of various market segments by type, covering the revenue, and development potential of each market segment, to help readers find the blue ocean market in different market segments.
Chapter 6: Provides the analysis of various market segments by application, covering the revenue, and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.
Chapter 7: Provides profiles of key companies, introducing the basic situation of the main companies in the market in detail, including product descriptions and specifications, Edge Machine Learning (Edge ML) revenue, gross margin, and recent development, etc.
Chapter 8: North America by type, by application and by country, revenue for each segment.
Chapter 9: Europe by type, by application and by country, revenue for each segment.
Chapter 10: China type, by application, revenue for each segment.
Chapter 11: Asia (excluding China) type, by application and by region, revenue for each segment.
Chapter 12: South America, Middle East and Africa by type, by application and by country, revenue for each segment.
Chapter 13: The main concluding insights of the report.

Please Note: Single-User license will be delivered via PDF from the publisher without the rights to print or to edit.

Table of Contents

196 Pages
1 Market Overview
1.1 Product Definition
1.2 Edge Machine Learning (Edge ML) Market by Type
1.2.1 Global Edge Machine Learning (Edge ML) Market Size by Type, 2021 VS 2025 VS 2032
1.2.2 Hardware
1.2.3 Software and Services
1.3 Edge Machine Learning (Edge ML) Market by Application
1.3.1 Global Edge Machine Learning (Edge ML) Market Size by Application, 2021 VS 2025 VS 2032
1.3.2 Automotive
1.3.3 Manufacturing
1.3.4 Retail
1.3.5 Agriculture
1.3.6 Healthcare
1.3.7 Other
1.4 Assumptions and Limitations
1.5 Study Goals and Objectives
2 Edge Machine Learning (Edge ML) Market Dynamics
2.1 Edge Machine Learning (Edge ML) Industry Trends
2.2 Edge Machine Learning (Edge ML) Industry Drivers
2.3 Edge Machine Learning (Edge ML) Industry Opportunities and Challenges
2.4 Edge Machine Learning (Edge ML) Industry Restraints
3 Global Growth Perspective
3.1 Global Edge Machine Learning (Edge ML) Market Perspective (2021-2032)
3.2 Global Edge Machine Learning (Edge ML) Growth Trends by Region
3.2.1 Global Edge Machine Learning (Edge ML) Market Size by Region: 2021 VS 2025 VS 2032
3.2.2 Global Edge Machine Learning (Edge ML) Market Size by Region (2021-2026)
3.2.3 Global Edge Machine Learning (Edge ML) Market Size by Region (2027-2032)
4 Competitive Landscape by Players
4.1 Global Edge Machine Learning (Edge ML) Revenue by Players
4.1.1 Global Edge Machine Learning (Edge ML) Revenue by Players (2021-2026)
4.1.2 Global Edge Machine Learning (Edge ML) Revenue Market Share by Players (2021-2026)
4.1.3 Global Edge Machine Learning (Edge ML) Players Revenue Share Top 10 and Top 5 in 2025
4.2 Global Edge Machine Learning (Edge ML) Key Players Ranking, 2024 VS 2025 VS 2026
4.3 Global Edge Machine Learning (Edge ML) Key Players Headquarters & Area Served
4.4 Global Edge Machine Learning (Edge ML) Players, Product Type & Application
4.5 Global Edge Machine Learning (Edge ML) Players Establishment Date
4.6 Market Competitive Analysis
4.6.1 Global Edge Machine Learning (Edge ML) Market CR5 and HHI
4.6.3 2025 Edge Machine Learning (Edge ML) Tier 1, Tier 2, and Tier 3
5 Edge Machine Learning (Edge ML) Market Size by Type
5.1 Global Edge Machine Learning (Edge ML) Revenue by Type (2021 VS 2025 VS 2032)
5.2 Global Edge Machine Learning (Edge ML) Revenue by Type (2021-2032)
5.3 Global Edge Machine Learning (Edge ML) Revenue Market Share by Type (2021-2032)
6 Edge Machine Learning (Edge ML) Market Size by Application
6.1 Global Edge Machine Learning (Edge ML) Revenue by Application (2021 VS 2025 VS 2032)
6.2 Global Edge Machine Learning (Edge ML) Revenue by Application (2021-2032)
6.3 Global Edge Machine Learning (Edge ML) Revenue Market Share by Application (2021-2032)
7 Company Profiles
7.1 Microsoft
7.1.1 Microsoft Company Information
7.1.2 Microsoft Business Overview
7.1.3 Microsoft Edge Machine Learning (Edge ML) Revenue and Gross Margin (2021-2026)
7.1.4 Microsoft Edge Machine Learning (Edge ML) Product Portfolio
7.1.5 Microsoft Recent Developments
7.2 Edge Impulse
7.2.1 Edge Impulse Company Information
7.2.2 Edge Impulse Business Overview
7.2.3 Edge Impulse Edge Machine Learning (Edge ML) Revenue and Gross Margin (2021-2026)
7.2.4 Edge Impulse Edge Machine Learning (Edge ML) Product Portfolio
7.2.5 Edge Impulse Recent Developments
7.3 Imagimob
7.3.1 Imagimob Company Information
7.3.2 Imagimob Business Overview
7.3.3 Imagimob Edge Machine Learning (Edge ML) Revenue and Gross Margin (2021-2026)
7.3.4 Imagimob Edge Machine Learning (Edge ML) Product Portfolio
7.3.5 Imagimob Recent Developments
7.4 SensiML
7.4.1 SensiML Company Information
7.4.2 SensiML Business Overview
7.4.3 SensiML Edge Machine Learning (Edge ML) Revenue and Gross Margin (2021-2026)
7.4.4 SensiML Edge Machine Learning (Edge ML) Product Portfolio
7.4.5 SensiML Recent Developments
7.5 Latent AI
7.5.1 Latent AI Company Information
7.5.2 Latent AI Business Overview
7.5.3 Latent AI Edge Machine Learning (Edge ML) Revenue and Gross Margin (2021-2026)
7.5.4 Latent AI Edge Machine Learning (Edge ML) Product Portfolio
7.5.5 Latent AI Recent Developments
7.6 Plumerai
7.6.1 Plumerai Company Information
7.6.2 Plumerai Business Overview
7.6.3 Plumerai Edge Machine Learning (Edge ML) Revenue and Gross Margin (2021-2026)
7.6.4 Plumerai Edge Machine Learning (Edge ML) Product Portfolio
7.6.5 Plumerai Recent Developments
7.7 DeGirum
7.7.1 DeGirum Company Information
7.7.2 DeGirum Business Overview
7.7.3 DeGirum Edge Machine Learning (Edge ML) Revenue and Gross Margin (2021-2026)
7.7.4 DeGirum Edge Machine Learning (Edge ML) Product Portfolio
7.7.5 DeGirum Recent Developments
7.8 NXP
7.8.1 NXP Company Information
7.8.2 NXP Business Overview
7.8.3 NXP Edge Machine Learning (Edge ML) Revenue and Gross Margin (2021-2026)
7.8.4 NXP Edge Machine Learning (Edge ML) Product Portfolio
7.8.5 NXP Recent Developments
7.9 Ekkono Solutions
7.9.1 Ekkono Solutions Company Information
7.9.2 Ekkono Solutions Business Overview
7.9.3 Ekkono Solutions Edge Machine Learning (Edge ML) Revenue and Gross Margin (2021-2026)
7.9.4 Ekkono Solutions Edge Machine Learning (Edge ML) Product Portfolio
7.9.5 Ekkono Solutions Recent Developments
7.10 Mjølner Informatics
7.10.1 Mjølner Informatics Company Information
7.10.2 Mjølner Informatics Business Overview
7.10.3 Mjølner Informatics Edge Machine Learning (Edge ML) Revenue and Gross Margin (2021-2026)
7.10.4 Mjølner Informatics Edge Machine Learning (Edge ML) Product Portfolio
7.10.5 Mjølner Informatics Recent Developments
7.11 STMicroelectronics
7.11.1 STMicroelectronics Company Information
7.11.2 STMicroelectronics Business Overview
7.11.3 STMicroelectronics Edge Machine Learning (Edge ML) Revenue and Gross Margin (2021-2026)
7.11.4 STMicroelectronics Edge Machine Learning (Edge ML) Product Portfolio
7.11.5 STMicroelectronics Recent Developments
8 North America
8.1 North America Edge Machine Learning (Edge ML) Revenue (2021-2032)
8.2 North America Edge Machine Learning (Edge ML) Revenue by Type (2021-2032)
8.2.1 North America Edge Machine Learning (Edge ML) Revenue by Type (2021-2026)
8.2.2 North America Edge Machine Learning (Edge ML) Revenue by Type (2027-2032)
8.3 North America Edge Machine Learning (Edge ML) Revenue Share by Type (2021-2032)
8.4 North America Edge Machine Learning (Edge ML) Revenue by Application (2021-2032)
8.4.1 North America Edge Machine Learning (Edge ML) Revenue by Application (2021-2026)
8.4.2 North America Edge Machine Learning (Edge ML) Revenue by Application (2027-2032)
8.5 North America Edge Machine Learning (Edge ML) Revenue Share by Application (2021-2032)
8.6 North America Edge Machine Learning (Edge ML) Revenue by Country
8.6.1 North America Edge Machine Learning (Edge ML) Revenue by Country (2021 VS 2025 VS 2032)
8.6.2 North America Edge Machine Learning (Edge ML) Revenue by Country (2021-2026)
8.6.3 North America Edge Machine Learning (Edge ML) Revenue by Country (2027-2032)
8.6.4 United States
8.6.5 Canada
8.6.6 Mexico
9 Europe
9.1 Europe Edge Machine Learning (Edge ML) Revenue (2021-2032)
9.2 Europe Edge Machine Learning (Edge ML) Revenue by Type (2021-2032)
9.2.1 Europe Edge Machine Learning (Edge ML) Revenue by Type (2021-2026)
9.2.2 Europe Edge Machine Learning (Edge ML) Revenue by Type (2027-2032)
9.3 Europe Edge Machine Learning (Edge ML) Revenue Share by Type (2021-2032)
9.4 Europe Edge Machine Learning (Edge ML) Revenue by Application (2021-2032)
9.4.1 Europe Edge Machine Learning (Edge ML) Revenue by Application (2021-2026)
9.4.2 Europe Edge Machine Learning (Edge ML) Revenue by Application (2027-2032)
9.5 Europe Edge Machine Learning (Edge ML) Revenue Share by Application (2021-2032)
9.6 Europe Edge Machine Learning (Edge ML) Revenue by Country
9.6.1 Europe Edge Machine Learning (Edge ML) Revenue by Country (2021 VS 2025 VS 2032)
9.6.2 Europe Edge Machine Learning (Edge ML) Revenue by Country (2021-2026)
9.6.3 Europe Edge Machine Learning (Edge ML) Revenue by Country (2027-2032)
9.6.4 Germany
9.6.5 France
9.6.6 U.K.
9.6.7 Italy
9.6.8 Russia
9.6.9 Spain
9.6.10 Netherlands
9.6.11 Switzerland
9.6.12 Sweden
9.6.13 Poland
10 China
10.1 China Edge Machine Learning (Edge ML) Revenue (2021-2032)
10.2 China Edge Machine Learning (Edge ML) Revenue by Type (2021-2032)
10.2.1 China Edge Machine Learning (Edge ML) Revenue by Type (2021-2026)
10.2.2 China Edge Machine Learning (Edge ML) Revenue by Type (2027-2032)
10.3 China Edge Machine Learning (Edge ML) Revenue Share by Type (2021-2032)
10.4 China Edge Machine Learning (Edge ML) Revenue by Application (2021-2032)
10.4.1 China Edge Machine Learning (Edge ML) Revenue by Application (2021-2026)
10.4.2 China Edge Machine Learning (Edge ML) Revenue by Application (2027-2032)
10.5 China Edge Machine Learning (Edge ML) Revenue Share by Application (2021-2032)
11 Asia (Excluding China)
11.1 Asia Edge Machine Learning (Edge ML) Revenue (2021-2032)
11.2 Asia Edge Machine Learning (Edge ML) Revenue by Type (2021-2032)
11.2.1 Asia Edge Machine Learning (Edge ML) Revenue by Type (2021-2026)
11.2.2 Asia Edge Machine Learning (Edge ML) Revenue by Type (2027-2032)
11.3 Asia Edge Machine Learning (Edge ML) Revenue Share by Type (2021-2032)
11.4 Asia Edge Machine Learning (Edge ML) Revenue by Application (2021-2032)
11.4.1 Asia Edge Machine Learning (Edge ML) Revenue by Application (2021-2026)
11.4.2 Asia Edge Machine Learning (Edge ML) Revenue by Application (2027-2032)
11.5 Asia Edge Machine Learning (Edge ML) Revenue Share by Application (2021-2032)
11.6 Asia Edge Machine Learning (Edge ML) Revenue by Country
11.6.1 Asia Edge Machine Learning (Edge ML) Revenue by Country (2021 VS 2025 VS 2032)
11.6.2 Asia Edge Machine Learning (Edge ML) Revenue by Country (2021-2026)
11.6.3 Asia Edge Machine Learning (Edge ML) Revenue by Country (2027-2032)
11.6.4 Japan
11.6.5 South Korea
11.6.6 India
11.6.7 Australia
11.6.8 Taiwan
11.6.9 Southeast Asia
12 South America, Middle East and Africa
12.1 SAMEA Edge Machine Learning (Edge ML) Revenue (2021-2032)
12.2 SAMEA Edge Machine Learning (Edge ML) Revenue by Type (2021-2032)
12.2.1 SAMEA Edge Machine Learning (Edge ML) Revenue by Type (2021-2026)
12.2.2 SAMEA Edge Machine Learning (Edge ML) Revenue by Type (2027-2032)
12.3 SAMEA Edge Machine Learning (Edge ML) Revenue Share by Type (2021-2032)
12.4 SAMEA Edge Machine Learning (Edge ML) Revenue by Application (2021-2032)
12.4.1 SAMEA Edge Machine Learning (Edge ML) Revenue by Application (2021-2026)
12.4.2 SAMEA Edge Machine Learning (Edge ML) Revenue by Application (2027-2032)
12.5 SAMEA Edge Machine Learning (Edge ML) Revenue Share by Application (2021-2032)
12.6 SAMEA Edge Machine Learning (Edge ML) Revenue by Country
12.6.1 SAMEA Edge Machine Learning (Edge ML) Revenue by Country (2021 VS 2025 VS 2032)
12.6.2 SAMEA Edge Machine Learning (Edge ML) Revenue by Country (2021-2026)
12.6.3 SAMEA Edge Machine Learning (Edge ML) Revenue by Country (2027-2032)
12.6.4 Brazil
12.6.5 Argentina
12.6.6 Chile
12.6.7 Colombia
12.6.8 Peru
12.6.9 Saudi Arabia
12.6.10 Israel
12.6.11 UAE
12.6.12 Turkey
12.6.13 Iran
12.6.14 Egypt
13 Concluding Insights
14 Appendix
14.1 Reasons for Doing This Study
14.2 Research Methodology
14.3 Research Process
14.4 Authors List of This Report
14.5 Data Source
14.5.1 Secondary Sources
14.5.2 Primary Sources
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.