Report cover image

Software-Defined Data Center Market by Component (Solutions, Services), Data Center Type (Enterprise Data Centers, Colocation Data Centers, Managed Hosting Data Centers), Application Area, End User Type, Industry Vertical, Deployment - Global Forecast 202

Publisher 360iResearch
Published Dec 01, 2025
Length 196 Pages
SKU # IRE20630261

Description

The Software-Defined Data Center Market was valued at USD 76.08 billion in 2024 and is projected to grow to USD 92.64 billion in 2025, with a CAGR of 23.70%, reaching USD 417.21 billion by 2032.

Executive overview of the software-defined data center as a catalyst for agile, secure, and cost-efficient digital infrastructure

The software-defined data center has moved from conceptual architecture to operational reality, redefining how digital infrastructure is designed, deployed, and managed. Instead of being constrained by proprietary hardware silos, organizations increasingly rely on abstraction, automation, and policy-driven control to orchestrate compute, storage, and networking resources as a unified, programmable fabric. This shift is occurring against a backdrop of relentless growth in data volumes, rising expectations for application performance, and intensifying pressure to contain infrastructure costs while improving resilience and security.

At its core, the software-defined data center replaces hardware-centric complexity with software-driven agility. Virtualization, containerization, and infrastructure-as-code practices allow IT teams to treat resources as pools that can be dynamically provisioned and scaled to match workload demands. This operating model aligns closely with cloud-native development, DevOps practices, and edge computing strategies, enabling organizations to deploy applications faster, recover from failures more quickly, and enforce consistent policies from the core data center to distributed locations.

As enterprises modernize legacy environments and service providers expand capacity to serve new digital services, the software-defined approach underpins a broader transformation in infrastructure economics. Capital-intensive refresh cycles and rigid architectures are giving way to flexible consumption models, automated lifecycle management, and more granular visibility into performance and risk. At the same time, regulatory pressure, data sovereignty requirements, and heightened cyber threats are compelling organizations to adopt architectures that can enforce fine-grained security and governance without sacrificing innovation.

This executive summary explores how these forces are reshaping the software-defined data center landscape. It examines the transformative shifts in technology and operating models, the implications of upcoming United States tariffs, and the nuanced dynamics across components, applications, deployment models, end users, and industries. It also highlights regional developments, profiles the strategies of key companies, and closes with actionable recommendations for decision-makers seeking to capture value from this accelerating transition.

Transformative shifts redefine software-defined data centers from hardware-centric silos to intelligent, fully automated digital fabrics

The landscape of data center infrastructure is undergoing fundamental change as organizations accelerate the move from static, hardware-bound systems toward fully software-defined environments. Traditional architectures built around discrete servers, storage arrays, and network appliances are increasingly replaced by platforms that virtualize every layer of the stack and orchestrate resources through centralized software control. This transformation is not simply a technical upgrade; it reshapes organizational roles, procurement models, and the economics of operating digital infrastructure.

A central shift lies in the maturation of software-defined compute, storage, and networking into cohesive solutions rather than isolated tools. Hypervisors, container orchestration platforms, and software-defined storage engines now integrate closely with network overlays and policy engines, enabling end-to-end automation that was previously out of reach. Management and orchestration layers have evolved from basic dashboards into intelligent control planes that apply analytics, observability, and closed-loop automation to optimize utilization, enforce compliance, and improve resilience. In parallel, security and microsegmentation capabilities have become built-in features of the data center fabric, rather than bolt-on appliances, allowing organizations to implement zero trust principles at scale.

Another transformative development is the rise of service-driven operating models for the data center. Professional services play a critical role in helping enterprises redesign architectures, adopt infrastructure-as-code practices, and re-platform critical applications for software-defined environments. Design and implementation expertise is in high demand as organizations navigate complex migrations, multi-vendor integration, and hybrid deployment strategies that span on-premises and cloud resources. At the same time, managed services offerings are gaining traction, with providers taking over day-to-day operations, capacity planning, and lifecycle management of software-defined infrastructure so that customers can focus on applications and business outcomes.

These shifts are tightly coupled with the evolution of data center types. Enterprise data centers are being modernized with software-defined layers to extend their useful life and support cloud-like agility. Colocation data centers and managed hosting facilities are incorporating software-defined capabilities to differentiate on flexibility and automation, offering customers programmable infrastructure within shared environments. Edge data centers are emerging as compact, software-defined nodes positioned closer to users and devices, supporting low-latency applications and distributed analytics. Meanwhile, hyperscale data centers operated by large cloud providers exemplify the most advanced implementations of software-defined architectures, setting expectations for elasticity, reliability, and efficiency.

The application focus of the software-defined data center is also evolving. Server virtualization and consolidation remain foundational, but organizations are increasingly prioritizing infrastructure automation, disaster recovery, and business continuity capabilities that can be orchestrated across sites and clouds. Big data and analytics workloads benefit from the ability to scale storage and compute independently, while edge computing workloads rely on distributed, software-defined infrastructure to process data near its source. This convergence of use cases reinforces the need for unified control planes and standardized policy frameworks.

As technology and use cases mature, the end-user profile is diversifying. Enterprises, including both large organizations and small and medium-sized businesses, are adopting software-defined architectures to simplify operations, reduce dependency on specialized hardware, and support digital transformation initiatives. Service providers, including telecom operators and internet service providers, use software-defined data centers to support virtualized network functions, cloud services, and content delivery. Cloud and colocation providers, along with system integrators, are leveraging these capabilities to build scalable, multi-tenant environments and to deliver value-added services that go beyond basic hosting.

Industry verticals are responding with differing priorities that further shape the landscape. Banking and financial institutions emphasize low-latency trading, compliance, and strong security controls that benefit from microsegmentation and automation. Energy and utilities seek resilient, distributed architectures for grid management and field operations. Government and defense entities require strict governance and data sovereignty, often favoring software-defined solutions that can run in secure, on-premises or sovereign cloud environments. Healthcare and life sciences organizations demand high availability, data integrity, and privacy-aware architectures for clinical systems and research platforms. In information technology and telecommunications, software-defined approaches are foundational to delivering scalable, multi-tenant services and supporting 5G-era network functions. Manufacturing and retail and e-commerce verticals are increasingly reliant on edge-enabled, software-defined infrastructures to support smart factories, real-time inventory, and omnichannel experiences.

Finally, deployment models are becoming more fluid, with cloud and on-premises no longer viewed as mutually exclusive. Software-defined data centers enable organizations to adopt hybrid and multi-cloud strategies that align workloads with the most appropriate environment while maintaining consistent management, security policies, and automation. As a result, the boundary between the corporate data center, colocation facilities, and cloud regions is blurring, giving rise to a distributed, software-defined fabric that underpins modern digital business.

Evolving United States tariffs through 2025 reshape hardware economics and accelerate the strategic pivot to software-defined architectures

The cumulative impact of United States tariffs through 2025 is reshaping cost structures, supply chains, and strategic choices for software-defined data center stakeholders. While much of the software stack is insulated from direct tariff exposure, the underlying hardware ecosystem-servers, storage systems, network equipment, and components such as semiconductors-is deeply affected by shifts in trade policy and import duties. These pressures cascade through the value chain, influencing pricing, vendor sourcing decisions, deployment timelines, and the balance between capital and operating expenditures.

As tariffs increase the landed cost of hardware sourced from certain regions, organizations are reassessing where and how they procure the physical building blocks of software-defined environments. Data center operators and enterprises are exploring diversified supplier bases, including alternative manufacturing locations and second-source vendors, to mitigate risk. This rebalancing often favors vendors with globally distributed production and flexible logistics, as they can adjust sourcing strategies to minimize tariff exposure and delivery disruptions. System integrators and managed service providers are similarly reevaluating their bill-of-materials strategies, seeking to protect margins while preserving competitive pricing for clients.

The tariff environment is also encouraging a re-examination of architectural choices. Because software-defined data centers can extract more value from commodity hardware by virtualizing and pooling resources, they offer a structural advantage in times of hardware cost inflation. Enterprises and service providers facing higher upfront equipment costs are increasingly motivated to adopt architectures that maximize utilization, extend asset lifecycles, and reduce over-provisioning. Software-defined compute and storage platforms, along with virtualized networking, help offset tariff-driven price pressures by enabling higher density, more flexible resource allocation, and more efficient scaling.

In parallel, there is a growing emphasis on lifecycle optimization and automation as hedges against both tariff-induced costs and ongoing operational expenses. Management and orchestration solutions, along with advanced security and microsegmentation, allow organizations to standardize configurations, automate patching and updates, and reduce manual intervention. This reduces operating costs and mitigates the risk that costlier hardware failures or upgrades will disrupt critical services. As tariffs and trade frictions introduce uncertainty into refresh planning, the ability to dynamically reallocate workloads and capacity across heterogeneous infrastructure becomes a significant strategic asset.

The services ecosystem is also feeling the impact. Consulting and design services are in higher demand as organizations navigate complex trade and regulatory landscapes while redefining their sourcing and deployment strategies. Providers are advising clients on how to architect software-defined data centers that balance local hardware sourcing, cloud adoption, and use of colocation or managed hosting facilities to optimize total cost of ownership under evolving tariff scenarios. In addition, managed services providers are increasingly positioning their offerings as a buffer against supply volatility, absorbing some of the complexity associated with multi-region procurement, hardware standardization, and lifecycle management.

Tariffs additionally intersect with regional data sovereignty and security considerations. Some organizations prefer to localize hardware procurement and assembly to maintain tighter control over supply chains and comply with national security or regulatory expectations. Software-defined architectures facilitate this approach by decoupling the control plane and policy management-often globally coordinated-from the underlying hardware, which can be sourced and deployed within specific jurisdictions. This balance allows multinational enterprises and service providers to remain compliant while still benefiting from centralized automation and common operational frameworks.

By 2025, the cumulative effect of tariffs will likely have accelerated a shift toward more modular, software-driven architectures and diversified hardware sourcing. Stakeholders that respond proactively-by leveraging software-defined efficiencies, optimizing service relationships, and investing in flexible orchestration and security capabilities-are better positioned to absorb cost pressures, maintain service quality, and sustain innovation. Those that cling to rigid, hardware-dependent models may face constrained budgets, elongated deployment cycles, and diminished agility in a market that increasingly rewards adaptability.

Key segmentation insights reveal how components, workloads, and industries converge to shape software-defined data center strategies

Segmentation by component reveals a nuanced picture of how value is being created within the software-defined data center. On the solutions side, organizations increasingly prioritize software-defined compute to abstract workloads from underlying hardware, software-defined storage to support elastic capacity and performance, and software-defined networking to enable programmable, secure connectivity. Management and orchestration capabilities sit at the center of these efforts, providing the automation and visibility needed to manage complex, hybrid environments. Security and microsegmentation functions are now integral to this stack, embedding threat prevention and lateral movement controls directly into the infrastructure fabric. Alongside these solutions, the services segment is maturing rapidly. Professional services, including consulting and design and implementation, are essential for planning, architecting, and executing transformations, while managed services help enterprises and service providers offload day-to-day operations and focus on strategic initiatives.

Different data center types demonstrate distinct adoption patterns and priorities. Enterprise data centers are modernizing to deliver cloud-like agility while leveraging existing investments. Colocation data centers are emphasizing software-defined capabilities to attract tenants who require programmable infrastructure, advanced security, and flexible interconnection. Managed hosting data centers are using software-defined platforms to offer differentiated service tiers and automated provisioning. Edge data centers are emerging as compact, highly automated nodes designed to support latency-sensitive applications and local analytics, relying heavily on software-defined networking and storage to operate efficiently at scale. Hyperscale data centers set the benchmark for software-defined maturity, operating massive, globally distributed infrastructures that depend on highly optimized, automated control planes.

The segmentation by application area underscores how software-defined data centers enable diverse workload strategies. Server virtualization and consolidation remain foundational, allowing enterprises to increase utilization and reduce hardware sprawl. Software-defined infrastructure automation extends this value by orchestrating provisioning, configuration, and policy enforcement across heterogeneous environments. Disaster recovery and business continuity use cases benefit significantly from the ability to replicate workloads, automate failover, and orchestrate recovery plans across data centers and clouds. Big data and analytics depend on scalable, high-throughput infrastructure that can adapt to fluctuating demand for compute and storage. Edge computing workloads rely on distributed, software-defined platforms that bring compute and storage closer to data sources, supporting use cases from industrial IoT to real-time personalization.

End user type segmentation highlights varying adoption drivers and service expectations. Enterprises, spanning both large organizations and small and medium-sized businesses, adopt software-defined data centers to simplify operations, reduce dependency on proprietary appliances, and support digital transformation. Large enterprises focus on integrating complex, multi-site environments and aligning infrastructure with global governance and security mandates, while smaller organizations seek turnkey solutions that reduce complexity and overhead. Service providers, including telecom operators and internet service providers, are leaning on software-defined architectures to virtualize network functions, support 5G and advanced connectivity services, and deliver cloud offerings at scale. Cloud providers and colocation providers use software-defined capabilities to optimize multi-tenant environments, enforce isolation, and offer scalable, self-service models. System integrators play a pivotal role in designing, integrating, and operating multi-vendor, software-defined environments for clients across sectors.

Industry vertical segmentation shows that each sector brings unique requirements to software-defined data centers. Banking, financial services and insurance organizations demand low latency, strong compliance controls, and granular security, making microsegmentation and policy-driven automation especially valuable. Energy and utilities require resilient, distributed infrastructure to support grid operations, remote monitoring, and field systems, often combining central data centers with edge locations. Government and defense entities emphasize data sovereignty, strict access control, and certified platforms, while maintaining the flexibility to support evolving mission requirements. Healthcare and life sciences organizations prioritize data protection, high availability, and support for demanding analytics and imaging workloads. In information technology and telecommunications, software-defined architectures are central to delivering cloud, connectivity, and managed services. Manufacturing increasingly relies on edge-enabled, software-defined infrastructures to support industrial automation, predictive maintenance, and digital twins. Retail and e-commerce use these capabilities to deliver seamless omnichannel experiences, real-time inventory visibility, and personalization at scale.

Deployment segmentation into cloud and on-premises reflects the growing dominance of hybrid and multi-cloud strategies. Many organizations continue to operate critical workloads on-premises while leveraging cloud environments for elasticity, innovation, and geographic reach. Software-defined data centers provide the connective tissue that makes this possible, allowing policies, security controls, and automation to span both deployment models. This flexibility enables organizations to align workload placement with regulatory requirements, performance needs, and cost considerations while maintaining a consistent operational model across their infrastructure estate.

Regional insights illuminate how local regulation, infrastructure maturity, and digital agendas drive SDDC adoption trajectories

Regional dynamics are playing a decisive role in how software-defined data centers evolve, with distinct patterns emerging across the Americas, Europe, Middle East and Africa, and Asia-Pacific. In the Americas, early adoption of virtualization, cloud computing, and DevOps practices has created a fertile environment for advanced software-defined architectures. Enterprises and service providers across North and South America are leveraging automation, microsegmentation, and hybrid cloud connectivity to modernize existing facilities and build new, highly efficient data centers. Regulatory requirements around data privacy and sector-specific compliance, particularly in financial services and healthcare, are accelerating the move toward architectures that can enforce consistent, auditable policies across distributed environments.

In the Americas, hyperscale cloud providers continue to expand their footprint, setting performance and efficiency benchmarks that influence enterprise and colocation strategies. At the same time, demand for edge computing in industries such as manufacturing, logistics, and media is driving the deployment of smaller, software-defined facilities closer to end users. The combination of strong ecosystem partners, a vibrant services market, and an innovation-focused culture encourages experimentation with new orchestration tools, infrastructure-as-code practices, and security models that integrate deeply with software-defined data center platforms.

Across Europe, Middle East and Africa, adoption is shaped by a complex mix of regulatory stringency, energy considerations, and heterogeneous market maturity. European countries, particularly those within the European Union, place strong emphasis on data protection, sustainability, and efficient resource utilization. This has led to significant interest in software-defined architectures that can optimize power usage, support dynamic workload placement across regions, and provide detailed observability for compliance reporting. In major European hubs, colocation and cloud providers are differentiating through advanced automation, interconnection services, and support for industry-specific compliance regimes.

In the Middle East, large-scale national digital transformation programs and investments in smart city initiatives are creating demand for modern, software-defined data centers capable of supporting government services, financial hubs, and consumer digital platforms. High-growth markets in Africa are investing in new data center capacity, often leveraging modular, software-defined architectures that can scale with rising connectivity and digital service usage. Across this broad region, the availability of skilled professionals and integration partners is a key factor influencing the pace and shape of adoption.

Asia-Pacific stands out for its rapid digitalization, expanding internet user base, and strong investment in cloud and edge infrastructure. Countries across the region are seeing rapid growth in e-commerce, fintech, online entertainment, and industrial digitalization, all of which depend on scalable, flexible data center platforms. Hyperscale cloud providers and large regional players are building and expanding facilities, often designed from the ground up with software-defined principles to deliver elasticity, resilience, and automation.

In Asia-Pacific, dense urban centers and geographically distributed populations create demand for both large core data centers and smaller edge sites. Software-defined networking and orchestration are crucial to connecting these locations and delivering consistent quality of service. Regulatory diversity across markets-from data localization rules to cybersecurity requirements-further drives the need for architectures that can enforce policies locally while being managed through centralized control planes. As organizations in the region compete for global relevance, investment in software-defined data centers is increasingly seen as foundational to long-term digital competitiveness.

Key company strategies emphasize platforms, partnerships, and services that operationalize software-defined data center value

The competitive landscape for software-defined data centers is characterized by intense innovation, strategic partnerships, and a blurring of boundaries between hardware, software, and services providers. Established infrastructure vendors continue to extend their portfolios with comprehensive software-defined compute, storage, and networking solutions tightly integrated with orchestration and security capabilities. These vendors are moving away from hardware-centric value propositions toward platform approaches that emphasize automation, analytics, and lifecycle management across hybrid and multi-cloud environments.

At the same time, specialized software vendors are exerting strong influence by focusing on specific layers of the stack, such as virtualization, container orchestration, software-defined storage, or network overlays. Their offerings often integrate with multiple hardware platforms and cloud environments, giving customers flexibility and reducing lock-in. Many of these players are investing heavily in open standards, APIs, and ecosystem integrations to fit into broader architectures and facilitate interoperability in complex, multi-vendor deployments.

Cloud providers have become central actors in the evolution of software-defined data centers. Their hyperscale infrastructures represent some of the most advanced implementations of software-defined principles, and they increasingly offer on-premises and edge extensions that bring their control planes into customer facilities. This convergence challenges traditional boundaries between on-premises data centers and public cloud, pushing enterprise IT teams and partners to rethink architecture, governance, and sourcing strategies.

Service providers and system integrators are equally pivotal, as they bridge gaps between technology capabilities and customer outcomes. They design, implement, and operate software-defined environments tailored to specific industries, regulatory contexts, and performance requirements. Many are building managed services portfolios that wrap around software-defined platforms, including monitoring, security operations, capacity planning, and compliance reporting. These offerings are especially attractive to organizations that lack the internal expertise or resources to manage complex, distributed infrastructures.

Security-focused companies are embedding their technologies more deeply into the software-defined data center fabric. Rather than relying solely on perimeter defenses, they are integrating microsegmentation, identity-aware access control, and threat detection into orchestration workflows and policy engines. This integrated approach supports zero trust strategies, enabling organizations to protect workloads wherever they reside-on-premises, in colocation facilities, or in the cloud.

Across the ecosystem, partnerships and acquisitions are accelerating. Vendors are teaming up to combine strengths in hardware, virtualization, networking, and security, while also collaborating with cloud providers and colocation operators to deliver integrated solutions. Acquisitions often target capabilities in automation, observability, edge computing, and AI-driven optimization, reflecting the industry’s focus on intelligent, self-tuning infrastructures. As the market matures, differentiation increasingly hinges on the ability to deliver holistic platforms, seamless integration, and proven outcomes rather than standalone products.

Actionable recommendations help industry leaders convert software-defined data center strategies into measurable business outcomes

Industry leaders navigating the software-defined data center landscape should focus on a set of actionable priorities that translate architectural opportunities into tangible business outcomes. First, organizations should anchor their strategies in a clear understanding of application and data requirements across the enterprise. By mapping critical workloads, latency sensitivities, regulatory constraints, and growth expectations, decision-makers can define which applications are best served by on-premises software-defined infrastructure, which can move to cloud environments, and which require edge deployments. This workload-centric view prevents technology-led initiatives from drifting away from business objectives.

With this foundation, leaders should invest in a coherent architecture that unifies software-defined compute, storage, networking, and security under a robust management and orchestration layer. Standardizing on common automation frameworks and adopting infrastructure-as-code practices help ensure consistent configuration, faster provisioning, and reduced operational risk. At the same time, it is prudent to avoid excessive dependency on any single vendor by prioritizing open standards, modular components, and interoperable APIs. This approach preserves flexibility as new technologies emerge and business requirements evolve.

Another critical recommendation is to reimagine operating models and talent strategies in parallel with technology investments. Software-defined environments demand skills in automation, scripting, policy design, and cross-domain troubleshooting, rather than narrow expertise in individual hardware platforms. Leaders should support cross-functional teams that include infrastructure, security, application, and networking specialists working together around shared service-level objectives. Training, certification programs, and collaboration with partners can accelerate the development of these capabilities.

Risk and security management must be deeply embedded into software-defined data center initiatives. Implementing microsegmentation, identity-centric access controls, and continuous monitoring from the outset reduces the likelihood of security gaps as infrastructure becomes more dynamic. Automating compliance checks and integrating security policies into orchestration workflows ensures that new workloads and configurations adhere to regulatory and corporate standards. Incorporating disaster recovery and business continuity considerations into design decisions from the beginning further strengthens resilience.

Leaders should also prioritize financial discipline and transparency. While software-defined data centers can deliver compelling efficiency gains, realizing these benefits requires careful planning of capital and operating expenditures. Establishing metrics for utilization, automation coverage, incident response, and change lead time helps track progress and guide optimization efforts. Procurement strategies should consider the implications of tariffs, supply chain disruptions, and support models, balancing immediate cost considerations with long-term flexibility and performance.

Finally, collaboration with a trusted ecosystem of partners is essential. Engaging professional services teams for consulting and design and implementation support can accelerate time to value and reduce the risk of missteps in complex migrations. Managed services providers can assume responsibility for ongoing operations, freeing internal teams to concentrate on innovation. Continuous dialogue with vendors, cloud providers, and system integrators ensures that organizations stay aligned with technological roadmaps and emerging best practices, maintaining a competitive edge in a rapidly evolving market.

Robust, multi-source research methodology underpins credible, decision-focused insights into software-defined data centers

The research methodology supporting this executive summary is grounded in a structured, multi-source approach designed to deliver reliable, decision-ready insights into the software-defined data center landscape. The process begins with an extensive secondary research phase that examines industry publications, technology standards bodies, regulatory documentation, vendor materials, and academic and technical literature. This f

Note: PDF & Excel + Online Access - 1 Year

Table of Contents

196 Pages
1. Preface
1.1. Objectives of the Study
1.2. Market Segmentation & Coverage
1.3. Years Considered for the Study
1.4. Currency
1.5. Language
1.6. Stakeholders
2. Research Methodology
3. Executive Summary
4. Market Overview
5. Market Insights
5.1. Organizations integrating AI-driven predictive analytics for automated SDDC infrastructure management
5.2. Adoption of edge-native SDDC architectures to support ultra-low latency enterprise applications
5.3. Integration of cloud-native container orchestration platforms within software-defined data centers
5.4. Implementation of zero trust security frameworks and automated microsegmentation in SDDCs
5.5. Utilization of GPU virtualization in software-defined data centers for AI and ML workload acceleration
5.6. Emergence of sustainability-driven energy optimization in SDDC hardware and operations
5.7. Growing deployment of intent-based networking within software-defined data centers to translate business policies into automated and consistent network configurations
5.8. Rising adoption of infrastructure as code and GitOps practices to provision, configure, and lifecycle-manage SDDC resources through programmable automation
5.9. Shift toward vendor-agnostic, disaggregated SDDC stacks using white-box switching, open networking standards, and extensible APIs to reduce lock-in and infrastructure costs
5.10. Integration of SDDC platforms with DevSecOps toolchains to embed security, compliance checks, and policy enforcement into continuous delivery pipelines
6. Cumulative Impact of United States Tariffs 2025
7. Cumulative Impact of Artificial Intelligence 2025
8. Software-Defined Data Center Market, by Component
8.1. Solutions
8.1.1. Software-Defined Compute
8.1.2. Software-Defined Storage
8.1.3. Software-Defined Networking
8.1.4. Management & Orchestration
8.1.5. Security & Microsegmentation
8.2. Services
8.2.1. Professional Services
8.2.1.1. Consulting
8.2.1.2. Design & Implementation
8.2.2. Managed Services
9. Software-Defined Data Center Market, by Data Center Type
9.1. Enterprise Data Centers
9.2. Colocation Data Centers
9.3. Managed Hosting Data Centers
9.4. Edge Data Centers
9.5. Hyperscale Data Centers
10. Software-Defined Data Center Market, by Application Area
10.1. Server Virtualization & Consolidation
10.2. Software-Defined Infrastructure Automation
10.3. Disaster Recovery & Business Continuity
10.4. Big Data & Analytics
10.5. Edge Computing Workloads
11. Software-Defined Data Center Market, by End User Type
11.1. Enterprises
11.1.1. Large Enterprises
11.1.2. Small & Medium Enterprises (SMEs)
11.2. Service Providers
11.2.1. Telecom Operators
11.2.2. Internet Service Providers
11.3. Cloud Providers
11.4. Colocation Providers
11.5. System Integrators
12. Software-Defined Data Center Market, by Industry Vertical
12.1. Banking, Financial Services & Insurance (BFSI)
12.2. Energy & Utilities
12.3. Government & Defense
12.4. Healthcare & Life Sciences
12.5. IT & Telecommunications
12.6. Manufacturing
12.7. Retail & E-Commerce
13. Software-Defined Data Center Market, by Deployment
13.1. Cloud
13.2. On-Premises
14. Software-Defined Data Center Market, by Region
14.1. Americas
14.1.1. North America
14.1.2. Latin America
14.2. Europe, Middle East & Africa
14.2.1. Europe
14.2.2. Middle East
14.2.3. Africa
14.3. Asia-Pacific
15. Software-Defined Data Center Market, by Group
15.1. ASEAN
15.2. GCC
15.3. European Union
15.4. BRICS
15.5. G7
15.6. NATO
16. Software-Defined Data Center Market, by Country
16.1. United States
16.2. Canada
16.3. Mexico
16.4. Brazil
16.5. United Kingdom
16.6. Germany
16.7. France
16.8. Russia
16.9. Italy
16.10. Spain
16.11. China
16.12. India
16.13. Japan
16.14. Australia
16.15. South Korea
17. Competitive Landscape
17.1. Market Share Analysis, 2024
17.2. FPNV Positioning Matrix, 2024
17.3. Competitive Analysis
17.3.1. Cisco Systems, Inc.
17.3.2. Microsoft Corporation
17.3.3. Arista Networks, Inc.
17.3.4. Arrcus Inc.
17.3.5. Broadcom Inc.
17.3.6. Check Point Software Technologies Ltd.
17.3.7. Citrix Systems, Inc.
17.3.8. Commvault Systems, Inc.
17.3.9. DataCore Software
17.3.10. Dell Technologies Inc.
17.3.11. Extreme Networks, Inc.
17.3.12. Fortinet, Inc.
17.3.13. Fujitsu Limited
17.3.14. Hammerspace
17.3.15. Hewlett Packard Enterprise Development LP
17.3.16. Hitachi, Ltd.
17.3.17. Huawei Technologies Co., Ltd.
17.3.18. International Business Machines Corporation
17.3.19. Lenovo Group Ltd.
17.3.20. Lightbits Labs Ltd.
17.3.21. NEC Corporation
17.3.22. NetApp, Inc.
17.3.23. Nutanix, Inc.
17.3.24. Palo Alto Networks, Inc.
17.3.25. Portworx by Pure Storage
17.3.26. Pure Storage, Inc.
17.3.27. Rackspace Technology, Inc.
17.3.28. Riverbed Technology, Inc.
17.3.29. Scality, Inc.
17.3.30. SUSE S.A.
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.