Social Business Intelligence Market by Product Type (Hardware, Services, Software), Service Model (Infrastructure As A Service, Platform As A Service, Software As A Service), End User Industry, Deployment Model, Enterprise Size, Distribution Channel - Glo
Description
The Social Business Intelligence Market was valued at USD 36.75 billion in 2024 and is projected to grow to USD 40.46 billion in 2025, with a CAGR of 10.14%, reaching USD 79.62 billion by 2032.
An authoritative opening framing how social business intelligence reshapes strategic decision-making amid rapid digital transformation and policy shifts
Social business intelligence stands at the intersection of digital transformation, customer behavior analytics, and strategic operations. As organizations collect exponentially more social, transactional, and operational data, the capacity to transform that data into timely, trustworthy insight becomes a critical differentiator. This introduction frames the discipline not as a narrow analytics capability but as a strategic function that integrates social listening, behavioral signal processing, and enterprise data to inform procurement, product development, channel strategy, and executive risk management.
The evolution of intelligence practices now spans real-time sentiment analysis, cross-channel attribution, and the orchestration of insights into enterprise workflows. Consequently, leaders must evaluate intelligence not only for tactical campaign optimization but also for its role in strategic planning, supplier selection, and regulatory compliance. Transitioning from ad hoc analysis to embedded intelligence requires cross-functional governance, investment in interoperable platforms, and a clear line of sight from insight to decision. In the context of shifting trade policies and technological change, this report positions social business intelligence as the connective tissue between market signals and resilient, forward-looking strategy.
How transformative shifts driven by AI, cloud maturation, supply chain adaptation, and regulatory evolution are redefining intelligence-driven business strategies
The current landscape is defined by transformative shifts that are simultaneously technological, regulatory, and operational in nature. Advances in artificial intelligence and machine learning have raised expectations for predictive and prescriptive analytics, enabling organizations to move from descriptive reporting to anticipatory action. At the same time, cloud maturation and hybrid deployment patterns have broadened options for deploying intelligence capabilities, allowing firms to optimize cost, latency, and control based on workload and compliance requirements.
Concurrently, macroeconomic and policy forces are driving firms to reassess supply chain footprints and sourcing strategies. Trade policy changes and tariff dynamics are prompting procurement teams to incorporate geopolitical scenario planning into vendor evaluation and total cost-of-ownership analysis. These factors combine to shift competitive dynamics: companies that integrate social signals with operational data will be better equipped to detect demand changes, reconfigure distribution strategies, and communicate more effectively with stakeholders. Consequently, leaders should view these shifts as an opportunity to embed adaptive intelligence into planning cycles, aligning technology adoption with risk mitigation and commercial agility.
Analyzing cumulative operational, strategic, and technological impacts of the United States tariff adjustments in 2025 on global supply chains and procurement
The cumulative effects of United States tariff adjustments enacted in 2025 extend across procurement, supplier relations, and technology sourcing decisions. Tariff increases and adjustments change relative cost structures for imported hardware components, influence where software and service contracts are sourced, and alter the calculus for regional distribution. Procurement teams respond by revisiting supplier diversification, increasing scrutiny of total landed costs, and accelerating negotiations to include tariff-contingent clauses. These adaptations are not limited to cost; they influence lead times, inventory strategies, and the viability of just-in-time approaches.
From an operational standpoint, tariffs amplify the importance of data-driven scenario planning. Organizations that can quickly model supplier substitution, reorder point adjustments, and channel repricing are better able to protect margins and preserve service levels. Technology vendors experience similar pressures: hardware vendors reassess manufacturing footprints, services firms adjust delivery models to minimize cross-border exposure, and software providers refine licensing and cloud deployment options to align with customer constraints. Importantly, the indirect impact on customer demand and input costs cascades into industry verticals such as manufacturing, retail, and banking, requiring cross-functional coordination between finance, procurement, and product teams to sustain competitiveness.
Actionable segmentation intelligence revealing how product, service model, deployment, enterprise size, industry verticals, and distribution dynamics interact
Segmentation reveals differentiated priorities and operational requirements across product, service model, deployment, enterprise scale, end-user industry, and distribution pathways. Based on product type, organizations must evaluate hardware choices spanning network, server, and storage options against services such as managed services and professional services and software categories including application and system software, recognizing that hardware procurement often triggers longer lead-time and tariff exposure while software licensing and subscriptions introduce different contract flexibilities. Based on service model, firms choose between infrastructure as a service, platform as a service, and software as a service, each presenting trade-offs in control, integration complexity, and cost predictability that influence where intelligence workloads are hosted.
Based on deployment model, hybrid cloud, multi-cloud, private cloud, and public cloud approaches shape latency, security posture, and vendor lock-in risk, and organizations should align deployment choice with regulatory constraints and performance needs. Based on enterprise size, the needs of large enterprises diverge from those of small and medium organizations, with the latter including medium, micro, and small enterprises that may prioritize turnkey managed services and SaaS to offset constrained IT budgets. Based on end-user industry, verticals such as banking, finance and insurance, healthcare, manufacturing, and retail display unique data governance, latency, and integration requirements that influence solution design. Based on distribution channel, direct sales and indirect sales routes-where indirect channels can include distributors, resellers, and value-added resellers-affect pricing models, support expectations, and the speed of deployment. The interplay among these segmentation axes drives vendor go-to-market choices and buyer procurement behavior, and managers should adopt a segmentation-aware approach to product development and customer engagement.
Regional strategic intelligence highlighting distinctive drivers and resilience patterns across Americas, Europe Middle East and Africa, and Asia-Pacific markets
Regional dynamics underscore the necessity of tailoring strategy to local economic, regulatory, and operational realities. In the Americas, proximity to US policy shifts and integrated North American supply chains heighten sensitivity to tariff changes and logistics constraints, prompting many firms to accelerate supplier diversification and nearshoring initiatives. This region also demonstrates strong adoption of cloud services and rapid integration of analytics into customer-facing operations, which amplifies the value of social business intelligence for revenue management and customer retention.
In Europe, Middle East & Africa, regulatory complexity and varied digital infrastructure maturity drive differentiated approaches to deployment and data governance. Organizations in this region often prioritize private and hybrid cloud models to meet stringent data protection requirements while leveraging managed services to bridge local capability gaps. The Asia-Pacific region presents contrasting dynamics: supply chain density and manufacturing scale make it central to global hardware sourcing, while rapid digital adoption and large consumer markets create intense demand for analytics-driven personalization. Consequently, strategy must balance cost-efficient sourcing, compliance with regional regulations, and investments in local partnerships to accelerate market entry and operational resilience across each region.
Key company-level insights on competitive positioning, strategic partnerships, product portfolios, and go-to-market models shaping industry advantage
Company-level behavior reveals converging strategies around platform consolidation, verticalized solutions, and partner ecosystems. Leading vendors prioritize integrated stacks that combine software capabilities with managed or professional services to reduce integration friction for buyers. Strategic partnerships and alliances, particularly those that extend cloud interoperability and managed service coverage, enable companies to address hybrid and multi-cloud demand while mitigating customer concerns over vendor lock-in. Meanwhile, some providers emphasize modular architectures that allow customers to assemble best-of-breed components while preserving orchestration and governance through a single pane of control.
Competitive positioning increasingly depends on demonstrable outcomes rather than feature parity. Companies that can present case studies showing measurable resilience gains, procurement cost reductions, or time-to-market improvements win stronger consideration. Pricing and licensing innovation-such as consumption-based billing, tariff-adjusted contract terms, and bundled advisory-are evolving to address changing buyer risk appetites. Channel strategies also matter: vendors that empower distribution partners with enablement, co-selling, and localized value propositions capture broader adoption in segments where direct sales models are less effective. Overall, executives should evaluate potential suppliers not only on product capability but also on their ecosystem depth, security posture, and ability to support rapid reconfiguration under tariff or supply disruption scenarios.
Practical, prioritized recommendations to help industry leaders mitigate tariff disruption, optimize digital investments, and strengthen operational resilience
Industry leaders should adopt a set of prioritized actions that translate strategic intent into operational resilience. First, diversify supplier footprints and incorporate tariff sensitivity into procurement dashboards to enable rapid supplier substitution and cost-aware sourcing. Second, accelerate investments in hybrid and multi-cloud architectures to retain control over sensitive workloads while leveraging public cloud agility for burst capacity and analytics processing. Third, standardize contracts to include tariff-contingency clauses and scenario-based pricing that distribute risk between buyers and suppliers.
Fourth, strengthen data governance and integration capabilities so that social signals and operational data can be fused reliably for near-real-time decisioning. Fifth, expand the use of managed services and outcome-based engagements for small and medium enterprises that lack internal capability to manage complex deployments. Sixth, invest in workforce reskilling to ensure teams can operationalize advanced analytics and interpret scenario simulations. Finally, establish cross-functional war rooms that bring procurement, finance, product, and analytics together for rapid scenario execution when tariff or supply chain shocks occur. Implementing these recommendations will reduce time-to-response, protect margins, and preserve customer experience under shifting trade and technology conditions.
Transparent research methodology detailing data collection, primary and secondary validation, segmentation logic, and analytical techniques applied in this analysis
This study was constructed using a mixed-methods research design that prioritizes transparency, triangulation, and reproducibility. Primary inputs included structured interviews with procurement leaders, CIOs, and product managers across end-user industries, combined with vendor briefings that clarified go-to-market strategies and solution roadmaps. Secondary research involved analysis of public regulatory documentation, trade publications, technical standards, and company disclosures to verify product capabilities and recent strategic moves. Data points were cross-validated through multiple independent sources to reduce bias and identify consistent patterns across regions and segments.
Analytical methods included segmentation mapping, scenario modeling to understand tariff exposure pathways, and qualitative synthesis to surface common operational playbooks. Segmentation logic aligned product type, service model, deployment approach, enterprise size, end-user industry, and distribution pathways to ensure practical relevance. Limitations are acknowledged: findings reflect the synthesis of available public information and interview input at the time of study and are intended to inform strategic direction rather than replace organization-specific due diligence. Where appropriate, sensitivity analysis was applied to highlight the range of plausible outcomes given tariff and supply chain variability.
Concise conclusion synthesizing strategic implications for stakeholders and outlining imperative next steps for intelligence-led organizations
In conclusion, the convergence of tariff dynamics, cloud evolution, and advanced analytics is reshaping how organizations approach intelligence and sourcing decisions. Stakeholders must move beyond tactical responses and embed adaptive intelligence into procurement, product planning, and customer engagement processes. The ability to fuse social signals with operational data and to execute rapid scenario-based adjustments will determine which organizations preserve margin and market position as trade policies and global supply networks evolve.
Leaders should treat the current environment as a catalyst for modernization: prioritize investments that improve decision velocity, cultivate flexible supplier relationships, and adopt deployment models that balance control with agility. By operationalizing the segmentation insights, regional considerations, and company behaviors highlighted in this analysis, executives can develop robust playbooks that support resilience and sustainable competitive advantage. Ultimately, the organizations that pair strategic foresight with disciplined execution will be best positioned to navigate uncertainty and seize emergent opportunities.
Note: PDF & Excel + Online Access - 1 Year
An authoritative opening framing how social business intelligence reshapes strategic decision-making amid rapid digital transformation and policy shifts
Social business intelligence stands at the intersection of digital transformation, customer behavior analytics, and strategic operations. As organizations collect exponentially more social, transactional, and operational data, the capacity to transform that data into timely, trustworthy insight becomes a critical differentiator. This introduction frames the discipline not as a narrow analytics capability but as a strategic function that integrates social listening, behavioral signal processing, and enterprise data to inform procurement, product development, channel strategy, and executive risk management.
The evolution of intelligence practices now spans real-time sentiment analysis, cross-channel attribution, and the orchestration of insights into enterprise workflows. Consequently, leaders must evaluate intelligence not only for tactical campaign optimization but also for its role in strategic planning, supplier selection, and regulatory compliance. Transitioning from ad hoc analysis to embedded intelligence requires cross-functional governance, investment in interoperable platforms, and a clear line of sight from insight to decision. In the context of shifting trade policies and technological change, this report positions social business intelligence as the connective tissue between market signals and resilient, forward-looking strategy.
How transformative shifts driven by AI, cloud maturation, supply chain adaptation, and regulatory evolution are redefining intelligence-driven business strategies
The current landscape is defined by transformative shifts that are simultaneously technological, regulatory, and operational in nature. Advances in artificial intelligence and machine learning have raised expectations for predictive and prescriptive analytics, enabling organizations to move from descriptive reporting to anticipatory action. At the same time, cloud maturation and hybrid deployment patterns have broadened options for deploying intelligence capabilities, allowing firms to optimize cost, latency, and control based on workload and compliance requirements.
Concurrently, macroeconomic and policy forces are driving firms to reassess supply chain footprints and sourcing strategies. Trade policy changes and tariff dynamics are prompting procurement teams to incorporate geopolitical scenario planning into vendor evaluation and total cost-of-ownership analysis. These factors combine to shift competitive dynamics: companies that integrate social signals with operational data will be better equipped to detect demand changes, reconfigure distribution strategies, and communicate more effectively with stakeholders. Consequently, leaders should view these shifts as an opportunity to embed adaptive intelligence into planning cycles, aligning technology adoption with risk mitigation and commercial agility.
Analyzing cumulative operational, strategic, and technological impacts of the United States tariff adjustments in 2025 on global supply chains and procurement
The cumulative effects of United States tariff adjustments enacted in 2025 extend across procurement, supplier relations, and technology sourcing decisions. Tariff increases and adjustments change relative cost structures for imported hardware components, influence where software and service contracts are sourced, and alter the calculus for regional distribution. Procurement teams respond by revisiting supplier diversification, increasing scrutiny of total landed costs, and accelerating negotiations to include tariff-contingent clauses. These adaptations are not limited to cost; they influence lead times, inventory strategies, and the viability of just-in-time approaches.
From an operational standpoint, tariffs amplify the importance of data-driven scenario planning. Organizations that can quickly model supplier substitution, reorder point adjustments, and channel repricing are better able to protect margins and preserve service levels. Technology vendors experience similar pressures: hardware vendors reassess manufacturing footprints, services firms adjust delivery models to minimize cross-border exposure, and software providers refine licensing and cloud deployment options to align with customer constraints. Importantly, the indirect impact on customer demand and input costs cascades into industry verticals such as manufacturing, retail, and banking, requiring cross-functional coordination between finance, procurement, and product teams to sustain competitiveness.
Actionable segmentation intelligence revealing how product, service model, deployment, enterprise size, industry verticals, and distribution dynamics interact
Segmentation reveals differentiated priorities and operational requirements across product, service model, deployment, enterprise scale, end-user industry, and distribution pathways. Based on product type, organizations must evaluate hardware choices spanning network, server, and storage options against services such as managed services and professional services and software categories including application and system software, recognizing that hardware procurement often triggers longer lead-time and tariff exposure while software licensing and subscriptions introduce different contract flexibilities. Based on service model, firms choose between infrastructure as a service, platform as a service, and software as a service, each presenting trade-offs in control, integration complexity, and cost predictability that influence where intelligence workloads are hosted.
Based on deployment model, hybrid cloud, multi-cloud, private cloud, and public cloud approaches shape latency, security posture, and vendor lock-in risk, and organizations should align deployment choice with regulatory constraints and performance needs. Based on enterprise size, the needs of large enterprises diverge from those of small and medium organizations, with the latter including medium, micro, and small enterprises that may prioritize turnkey managed services and SaaS to offset constrained IT budgets. Based on end-user industry, verticals such as banking, finance and insurance, healthcare, manufacturing, and retail display unique data governance, latency, and integration requirements that influence solution design. Based on distribution channel, direct sales and indirect sales routes-where indirect channels can include distributors, resellers, and value-added resellers-affect pricing models, support expectations, and the speed of deployment. The interplay among these segmentation axes drives vendor go-to-market choices and buyer procurement behavior, and managers should adopt a segmentation-aware approach to product development and customer engagement.
Regional strategic intelligence highlighting distinctive drivers and resilience patterns across Americas, Europe Middle East and Africa, and Asia-Pacific markets
Regional dynamics underscore the necessity of tailoring strategy to local economic, regulatory, and operational realities. In the Americas, proximity to US policy shifts and integrated North American supply chains heighten sensitivity to tariff changes and logistics constraints, prompting many firms to accelerate supplier diversification and nearshoring initiatives. This region also demonstrates strong adoption of cloud services and rapid integration of analytics into customer-facing operations, which amplifies the value of social business intelligence for revenue management and customer retention.
In Europe, Middle East & Africa, regulatory complexity and varied digital infrastructure maturity drive differentiated approaches to deployment and data governance. Organizations in this region often prioritize private and hybrid cloud models to meet stringent data protection requirements while leveraging managed services to bridge local capability gaps. The Asia-Pacific region presents contrasting dynamics: supply chain density and manufacturing scale make it central to global hardware sourcing, while rapid digital adoption and large consumer markets create intense demand for analytics-driven personalization. Consequently, strategy must balance cost-efficient sourcing, compliance with regional regulations, and investments in local partnerships to accelerate market entry and operational resilience across each region.
Key company-level insights on competitive positioning, strategic partnerships, product portfolios, and go-to-market models shaping industry advantage
Company-level behavior reveals converging strategies around platform consolidation, verticalized solutions, and partner ecosystems. Leading vendors prioritize integrated stacks that combine software capabilities with managed or professional services to reduce integration friction for buyers. Strategic partnerships and alliances, particularly those that extend cloud interoperability and managed service coverage, enable companies to address hybrid and multi-cloud demand while mitigating customer concerns over vendor lock-in. Meanwhile, some providers emphasize modular architectures that allow customers to assemble best-of-breed components while preserving orchestration and governance through a single pane of control.
Competitive positioning increasingly depends on demonstrable outcomes rather than feature parity. Companies that can present case studies showing measurable resilience gains, procurement cost reductions, or time-to-market improvements win stronger consideration. Pricing and licensing innovation-such as consumption-based billing, tariff-adjusted contract terms, and bundled advisory-are evolving to address changing buyer risk appetites. Channel strategies also matter: vendors that empower distribution partners with enablement, co-selling, and localized value propositions capture broader adoption in segments where direct sales models are less effective. Overall, executives should evaluate potential suppliers not only on product capability but also on their ecosystem depth, security posture, and ability to support rapid reconfiguration under tariff or supply disruption scenarios.
Practical, prioritized recommendations to help industry leaders mitigate tariff disruption, optimize digital investments, and strengthen operational resilience
Industry leaders should adopt a set of prioritized actions that translate strategic intent into operational resilience. First, diversify supplier footprints and incorporate tariff sensitivity into procurement dashboards to enable rapid supplier substitution and cost-aware sourcing. Second, accelerate investments in hybrid and multi-cloud architectures to retain control over sensitive workloads while leveraging public cloud agility for burst capacity and analytics processing. Third, standardize contracts to include tariff-contingency clauses and scenario-based pricing that distribute risk between buyers and suppliers.
Fourth, strengthen data governance and integration capabilities so that social signals and operational data can be fused reliably for near-real-time decisioning. Fifth, expand the use of managed services and outcome-based engagements for small and medium enterprises that lack internal capability to manage complex deployments. Sixth, invest in workforce reskilling to ensure teams can operationalize advanced analytics and interpret scenario simulations. Finally, establish cross-functional war rooms that bring procurement, finance, product, and analytics together for rapid scenario execution when tariff or supply chain shocks occur. Implementing these recommendations will reduce time-to-response, protect margins, and preserve customer experience under shifting trade and technology conditions.
Transparent research methodology detailing data collection, primary and secondary validation, segmentation logic, and analytical techniques applied in this analysis
This study was constructed using a mixed-methods research design that prioritizes transparency, triangulation, and reproducibility. Primary inputs included structured interviews with procurement leaders, CIOs, and product managers across end-user industries, combined with vendor briefings that clarified go-to-market strategies and solution roadmaps. Secondary research involved analysis of public regulatory documentation, trade publications, technical standards, and company disclosures to verify product capabilities and recent strategic moves. Data points were cross-validated through multiple independent sources to reduce bias and identify consistent patterns across regions and segments.
Analytical methods included segmentation mapping, scenario modeling to understand tariff exposure pathways, and qualitative synthesis to surface common operational playbooks. Segmentation logic aligned product type, service model, deployment approach, enterprise size, end-user industry, and distribution pathways to ensure practical relevance. Limitations are acknowledged: findings reflect the synthesis of available public information and interview input at the time of study and are intended to inform strategic direction rather than replace organization-specific due diligence. Where appropriate, sensitivity analysis was applied to highlight the range of plausible outcomes given tariff and supply chain variability.
Concise conclusion synthesizing strategic implications for stakeholders and outlining imperative next steps for intelligence-led organizations
In conclusion, the convergence of tariff dynamics, cloud evolution, and advanced analytics is reshaping how organizations approach intelligence and sourcing decisions. Stakeholders must move beyond tactical responses and embed adaptive intelligence into procurement, product planning, and customer engagement processes. The ability to fuse social signals with operational data and to execute rapid scenario-based adjustments will determine which organizations preserve margin and market position as trade policies and global supply networks evolve.
Leaders should treat the current environment as a catalyst for modernization: prioritize investments that improve decision velocity, cultivate flexible supplier relationships, and adopt deployment models that balance control with agility. By operationalizing the segmentation insights, regional considerations, and company behaviors highlighted in this analysis, executives can develop robust playbooks that support resilience and sustainable competitive advantage. Ultimately, the organizations that pair strategic foresight with disciplined execution will be best positioned to navigate uncertainty and seize emergent opportunities.
Note: PDF & Excel + Online Access - 1 Year
Table of Contents
184 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Increasing integration of AI-powered sentiment scoring to drive personalized marketing strategies
- 5.2. Growing demand for cross-channel social listening tools enabling comprehensive brand reputation management
- 5.3. Shift towards predictive analytics in social media intelligence for proactive consumer trend forecasting
- 5.4. Emergence of privacy-compliant social data aggregation models to align with evolving data protection regulations
- 5.5. Expansion of influencer performance measurement metrics to quantify ROI across diverse social platforms
- 5.6. Development of automated crisis detection systems using natural language processing across social channels
- 5.7. Rise of image and video analysis algorithms to decode visual content engagement patterns for brands
- 5.8. Implementation of multilingual AI models to capture sentiment nuances in global social conversations
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. Social Business Intelligence Market, by Product Type
- 8.1. Hardware
- 8.1.1. Network
- 8.1.2. Server
- 8.1.3. Storage
- 8.2. Services
- 8.2.1. Managed Services
- 8.2.2. Professional Services
- 8.3. Software
- 8.3.1. Application Software
- 8.3.2. System Software
- 9. Social Business Intelligence Market, by Service Model
- 9.1. Infrastructure As A Service
- 9.2. Platform As A Service
- 9.3. Software As A Service
- 10. Social Business Intelligence Market, by End User Industry
- 10.1. Banking, Financial Services & Insurance
- 10.2. Healthcare
- 10.3. Manufacturing
- 10.4. Retail
- 11. Social Business Intelligence Market, by Deployment Model
- 11.1. Private Cloud
- 11.2. Public Cloud
- 12. Social Business Intelligence Market, by Enterprise Size
- 12.1. Large Enterprise
- 12.2. Small And Medium Enterprise
- 13. Social Business Intelligence Market, by Distribution Channel
- 13.1. Direct Sales
- 13.2. Indirect Sales
- 14. Social Business Intelligence Market, by Region
- 14.1. Americas
- 14.1.1. North America
- 14.1.2. Latin America
- 14.2. Europe, Middle East & Africa
- 14.2.1. Europe
- 14.2.2. Middle East
- 14.2.3. Africa
- 14.3. Asia-Pacific
- 15. Social Business Intelligence Market, by Group
- 15.1. ASEAN
- 15.2. GCC
- 15.3. European Union
- 15.4. BRICS
- 15.5. G7
- 15.6. NATO
- 16. Social Business Intelligence Market, by Country
- 16.1. United States
- 16.2. Canada
- 16.3. Mexico
- 16.4. Brazil
- 16.5. United Kingdom
- 16.6. Germany
- 16.7. France
- 16.8. Russia
- 16.9. Italy
- 16.10. Spain
- 16.11. China
- 16.12. India
- 16.13. Japan
- 16.14. Australia
- 16.15. South Korea
- 17. Competitive Landscape
- 17.1. Market Share Analysis, 2024
- 17.2. FPNV Positioning Matrix, 2024
- 17.3. Competitive Analysis
- 17.3.1. Adobe Inc.
- 17.3.2. Brandwatch Ltd.
- 17.3.3. Evolve24 by Maritz Research, Inc.
- 17.3.4. GoodData Corp.
- 17.3.5. Hootsuite Inc.
- 17.3.6. International Business Machines Corporation
- 17.3.7. Ipsos Group S A
- 17.3.8. Meltwater Group AS
- 17.3.9. Oracle Corporation
- 17.3.10. Salesforce, Inc.
- 17.3.11. SAP SE
- 17.3.12. SAS Institute Inc.
- 17.3.13. Sprinklr, Inc.
- 17.3.14. Talkwalker NV
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

