In-Silico Drug Discovery Market by Technology Platform (Computational Chemistry And Bioinformatics, High Performance Computing, Machine Learning And Ai), Deployment Model (Cloud Based, On Premise), Therapeutic Area, Application, End User - Global Forecast
Description
The In-Silico Drug Discovery Market was valued at USD 6.89 billion in 2024 and is projected to grow to USD 7.94 billion in 2025, with a CAGR of 15.41%, reaching USD 21.70 billion by 2032.
Framing the strategic and scientific context of in-silico drug discovery to guide research leaders and operational planners toward evidence-driven adoption
In-silico drug discovery has shifted from an experimental adjunct to an integral pillar of therapeutic innovation, driven by advances in computational power, algorithmic sophistication, and richer biological datasets. This introduction frames the discipline as a convergence of computational chemistry, bioinformatics, high-performance computing, machine learning, and molecular modeling that accelerates hypothesis generation and refines candidate selection before costly laboratory validation.
As discovery teams operate within tighter timelines and constrained budgets, virtual approaches reduce empirical noise and direct wet-lab effort toward the most promising leads. Early adoption has evolved into strategic adoption as organizations appreciate how predictive modeling improves efficiency across discovery stages, from target validation to optimization. Importantly, the technology ecosystem now supports diverse deployment models, enabling both cloud-based scalability for transient compute spikes and on-premise control for sensitive datasets.
Transitioning from proof-of-concept to routine use requires cultural and operational adjustments; research organizations must integrate computational outputs with experimental pipelines, train cross-disciplinary staff, and establish robust validation frameworks. Regulatory expectations and data provenance will continue to shape adoption, and therefore stakeholders should view in-silico methods as complementary enablers that augment experimental rigor while unlocking new modalities of therapeutic exploration.
How technological advances, interdisciplinary teams, and flexible deployment models are reshaping discovery processes and enabling capability-centric strategies
The landscape of in-silico drug discovery is undergoing transformative shifts that extend beyond incremental tool improvements into structural changes in how compounds are discovered and evaluated. Advances in machine learning architectures and richer biological datasets are enabling models that capture complex pharmacological relationships, thereby improving prediction fidelity for ADMET properties, binding affinities, and off-target interactions. Meanwhile, high-performance computing and cloud-native platforms provide the computational elasticity needed to run large-scale virtual screens and iterative molecular design workflows.
Concurrently, industry practice is evolving: cross-disciplinary teams blend computational chemists with data scientists and experimentalists, creating flattened workflows where in-silico outputs rapidly feed into confirmatory assays. This integrative approach shortens decision cycles and allows organizations to pursue riskier, higher-reward novel targets while preserving resource efficiency. Furthermore, the emergence of modular deployment models-cloud-based for scale and on-premise for confidentiality-enables organizations to tailor infrastructure to security, cost, and compliance constraints.
The net effect is a shift from tool-centric adoption to capability-centric strategy, where leadership invests in people, processes, and governance to extract sustained value from computational discovery. As these shifts continue, success will depend on harmonizing technological capability with experimental validation, reproducible workflows, and transparent model interpretability.
Assessing the cascading effects of United States tariff measures on procurement decisions, cloud strategies, and global research collaboration dynamics
The imposition of tariffs by the United States in 2025 introduced layered cost considerations that ripple across global research supply chains, computational infrastructure procurement, and software licensing arrangements. Organizations that rely on imported specialized hardware for high-performance computing or on international cloud services negotiated under cross-border procurement structures experienced added procurement complexity. In response, stakeholders adopted adaptive strategies such as diversifying hardware vendors, engaging regional cloud partners, and prioritizing software portability to mitigate exposure to tariff-driven cost oscillations.
Beyond procurement, tariffs influenced strategic partnerships and localization decisions. Pharmaceutical and biotechnology companies reassessed contract manufacturing and research collaborations to optimize for tariff-resilient geographies and supply lines. Contract research organizations and academic consortia adjusted their sourcing and partnership models to maintain access to critical resources and to preserve continuity in long-running computational projects. These shifts prompted renewed emphasis on data sovereignty and governance, particularly where deploying on-premise solutions became a practical alternative to cloud services subject to cross-border commercial terms.
Importantly, the cumulative impact of the tariff environment accelerated longer-term trends toward resilient infrastructure and supply chain diversification. Institutions that proactively re-architected procurement frameworks and vendor agreements were better positioned to absorb policy shocks and sustain computational discovery pipelines without disruptive interruptions to research timelines.
A layered segmentation framework that maps technology platforms, application use cases, end users, deployment models, and therapeutic priorities to strategic investment decisions
Effective segmentation clarifies where in-silico capabilities deliver the greatest strategic advantage by aligning technology platforms, applications, end users, deployment preferences, and therapeutic priorities. The technology platform dimension encompasses computational chemistry and bioinformatics, high-performance computing, machine learning and AI, and molecular modeling, each contributing unique capabilities from algorithmic prediction to simulation throughput and data integration. Application-focused segmentation highlights admet prediction, lead identification and optimization, pharmacokinetics modeling, target identification and validation, and virtual screening; within admet prediction, practitioners pursue absorption, distribution, excretion, metabolism, and toxicity prediction, while lead identification and optimization relies on de novo design and fragment-based optimization, and virtual screening uses both ligand-based and structure-based approaches.
End-user segmentation distinguishes academic and research institutes, contract research organizations, and pharmaceutical and biotechnology companies, reflecting divergent priorities in exploratory science, projectized service delivery, and product-driven pipelines. Deployment model segmentation separates cloud-based and on-premise solutions, a distinction that informs scalability, cost profiles, and data governance requirements. Therapeutic area segmentation-Cardiovascular, Central Nervous System, Infectious Diseases, and Oncology-illustrates how disease biology influences modeling choices, data needs, and validation standards.
Taken together, these segmentation lenses provide a composite picture that helps leaders prioritize investments, design interoperable workflows, and tailor talent strategies to the technical and regulatory realities of each use case.
Interpreting regional strengths, regulatory nuances, and infrastructure priorities to align in-silico discovery strategies with geographic competitive advantages
Regional dynamics shape competitive positioning, talent availability, regulatory posture, and infrastructure strategy in computational drug discovery, and differences are evident across the Americas, Europe, Middle East & Africa, and Asia-Pacific. The Americas exhibit concentrated hubs of biotech innovation and deep integration between academic centers and industry, fueling collaborative models and access to venture capital and entrepreneurial ecosystems. This concentration supports rapid translation of in-silico methods into early-stage development and commercial partnerships.
In Europe, Middle East & Africa, research institutions often emphasize regulatory alignment and cross-border collaboration, with a growing emphasis on data privacy and sovereignty that influences deployment preferences. Public-private partnerships and pan-regional funding initiatives encourage standardization and interoperability in computational pipelines. The Asia-Pacific region combines large talent pools, growing computational infrastructure investments, and robust manufacturing ecosystems, which together enable rapid scale-up of discovery programs and a pronounced focus on cost-efficient, high-throughput virtual screening strategies.
Across regions, local regulatory expectations, IP frameworks, and workforce specializations inform how organizations select between cloud-based and on-premise deployments, structure collaborations with contract research providers, and prioritize therapeutic areas. Understanding these regional nuances enables leaders to align operational models with local strengths and to design outward-facing partnerships that leverage complementary capabilities across geographies.
How diversified provider capabilities, collaborative partnerships, and rigorous validation practices define competitive differentiation and procurement priorities in computational discovery
The competitive landscape in in-silico discovery is defined more by complementary capabilities and strategic alliances than by a single dominant model. Leading companies differentiate through proprietary algorithms, curated biological datasets, and integrated platforms that combine prediction engines with visualization and workflow orchestration. Others focus on specialized niches such as computational ADMET profiling, fragment-based optimization engines, or high-throughput virtual screening modules, creating a mosaic of providers that enterprises assemble to match project needs.
Partnership activity remains a central driver of capability expansion; collaborations between platform providers and large pharmaceutical companies often cover co-development of model libraries, joint validation studies, and shared access to experimental datasets that enhance predictive performance. Contract research organizations and academic centers also contribute by operationalizing computational outputs within experimental pipelines, thereby shortening feedback loops and improving real-world validation rates. Additionally, mergers and acquisitions continue to rationalize capability stacks, absorbing niche technologies into broader platforms that offer end-to-end discovery support.
For buyers, vendor selection should prioritize reproducibility, model interpretability, data provenance, and the ability to integrate with existing laboratory information management systems. Suppliers that provide transparent validation evidence, flexible deployment models, and robust partnership terms tend to enable the most productive long-term engagements across diverse discovery programs.
Practical operational, governance, and partnership steps for leaders to institutionalize reproducible computational discovery and accelerate translational outcomes
Industry leaders should pursue a set of actionable initiatives to secure sustainable advantage in in-silico drug discovery that combine capability building, governance, and strategic partnerships. First, invest in cross-functional teams that blend computational scientists with experimentalists, data engineers, and regulatory experts to ensure model outputs translate into testable hypotheses and meet compliance needs. Next, prioritize reproducibility and interpretability by instituting standardized validation workflows, version-controlled model registries, and clear documentation of data provenance and preprocessing steps.
Organizations should also diversify their infrastructure strategy by adopting hybrid deployment models that balance the scalability of cloud-based compute with the control and data sovereignty offered by on-premise systems, while negotiating vendor agreements that include portability clauses. Proactively cultivate partnerships with academic centers and contract research organizations to access niche expertise and to accelerate empirical validation of computational predictions. Furthermore, build talent pipelines through targeted hiring, upskilling programs, and secondments that embed computational literacy across discovery groups.
Finally, establish governance frameworks that oversee model risk, data quality, and ethical considerations, ensuring that adoption decisions reflect scientific rigor and regulatory readiness. By aligning these operational priorities with strategic investment themes, leaders can harness computational methods to drive reproducible innovation and measurable translational impact.
A multi-source, triangulated research approach combining technical literature, expert interviews, and validation cross-checks to derive robust insights into computational discovery practices
The research methodology underpinning this analysis combined a multi-source evidence approach, integrating peer-reviewed literature, clinical and molecular databases, patent records, corporate disclosures, and direct expert consultations to construct a coherent view of technological capabilities and industry practices. Secondary sources provided historical context and technical detail on algorithmic advances and computational platforms, while primary interviews with discovery scientists, CIOs, and research executives illuminated operational realities, procurement drivers, and validation practices.
Analytical methods included qualitative synthesis of technological trends, cross-validation of capability claims against published benchmarks, and scenario-based assessments that examined resilience factors such as procurement disruptions, data governance constraints, and deployment trade-offs. Emphasis was placed on reproducibility: model descriptions and validation schemas were compared across sources to identify common standards and divergent practices. Data governance considerations and regulatory influences were analyzed through policy review and practitioner testimony to capture regional nuance.
Limitations include the dynamic evolution of algorithms and the proprietary nature of some validation datasets, which can restrict full external replication. To mitigate these challenges, the methodology prioritized triangulation across independent sources and sought corroboration from multiple stakeholder perspectives. This layered approach ensures the findings reflect both technical feasibility and operational applicability.
Concluding synthesis on how capability integration, governance, and collaborative ecosystems will determine which organizations translate computational insights into therapeutic progress
In-silico drug discovery has entered a phase where technological possibility meets operational necessity, and organizations that align people, processes, and infrastructure will lead the next wave of therapeutic innovation. The integration of computational chemistry, AI-driven modeling, and scalable compute resources enables more focused experimental programs, reduces attrition through earlier triage, and opens exploratory pathways for novel target classes. Success rests on embedding reproducibility, interpretability, and governance into discovery workflows so that computational outputs reliably inform decision-making.
Regional and policy factors, including procurement constraints and data governance requirements, shape infrastructure choices and partnership strategies. Meanwhile, segmentation across platforms, applications, end users, deployment models, and therapeutic areas clarifies where investments yield the highest strategic return and where specialized capabilities are required. Companies that cultivate collaborative ecosystems-linking platform providers, contract researchers, and academic partners-will accelerate validation cycles and increase translational impact.
Ultimately, the future trajectory favors organizations that treat in-silico methods as systemic capabilities rather than point solutions, investing in validation, talent, and interoperable systems that transform predictive insights into concrete experimental advances and clinical potential.
Note: PDF & Excel + Online Access - 1 Year
Framing the strategic and scientific context of in-silico drug discovery to guide research leaders and operational planners toward evidence-driven adoption
In-silico drug discovery has shifted from an experimental adjunct to an integral pillar of therapeutic innovation, driven by advances in computational power, algorithmic sophistication, and richer biological datasets. This introduction frames the discipline as a convergence of computational chemistry, bioinformatics, high-performance computing, machine learning, and molecular modeling that accelerates hypothesis generation and refines candidate selection before costly laboratory validation.
As discovery teams operate within tighter timelines and constrained budgets, virtual approaches reduce empirical noise and direct wet-lab effort toward the most promising leads. Early adoption has evolved into strategic adoption as organizations appreciate how predictive modeling improves efficiency across discovery stages, from target validation to optimization. Importantly, the technology ecosystem now supports diverse deployment models, enabling both cloud-based scalability for transient compute spikes and on-premise control for sensitive datasets.
Transitioning from proof-of-concept to routine use requires cultural and operational adjustments; research organizations must integrate computational outputs with experimental pipelines, train cross-disciplinary staff, and establish robust validation frameworks. Regulatory expectations and data provenance will continue to shape adoption, and therefore stakeholders should view in-silico methods as complementary enablers that augment experimental rigor while unlocking new modalities of therapeutic exploration.
How technological advances, interdisciplinary teams, and flexible deployment models are reshaping discovery processes and enabling capability-centric strategies
The landscape of in-silico drug discovery is undergoing transformative shifts that extend beyond incremental tool improvements into structural changes in how compounds are discovered and evaluated. Advances in machine learning architectures and richer biological datasets are enabling models that capture complex pharmacological relationships, thereby improving prediction fidelity for ADMET properties, binding affinities, and off-target interactions. Meanwhile, high-performance computing and cloud-native platforms provide the computational elasticity needed to run large-scale virtual screens and iterative molecular design workflows.
Concurrently, industry practice is evolving: cross-disciplinary teams blend computational chemists with data scientists and experimentalists, creating flattened workflows where in-silico outputs rapidly feed into confirmatory assays. This integrative approach shortens decision cycles and allows organizations to pursue riskier, higher-reward novel targets while preserving resource efficiency. Furthermore, the emergence of modular deployment models-cloud-based for scale and on-premise for confidentiality-enables organizations to tailor infrastructure to security, cost, and compliance constraints.
The net effect is a shift from tool-centric adoption to capability-centric strategy, where leadership invests in people, processes, and governance to extract sustained value from computational discovery. As these shifts continue, success will depend on harmonizing technological capability with experimental validation, reproducible workflows, and transparent model interpretability.
Assessing the cascading effects of United States tariff measures on procurement decisions, cloud strategies, and global research collaboration dynamics
The imposition of tariffs by the United States in 2025 introduced layered cost considerations that ripple across global research supply chains, computational infrastructure procurement, and software licensing arrangements. Organizations that rely on imported specialized hardware for high-performance computing or on international cloud services negotiated under cross-border procurement structures experienced added procurement complexity. In response, stakeholders adopted adaptive strategies such as diversifying hardware vendors, engaging regional cloud partners, and prioritizing software portability to mitigate exposure to tariff-driven cost oscillations.
Beyond procurement, tariffs influenced strategic partnerships and localization decisions. Pharmaceutical and biotechnology companies reassessed contract manufacturing and research collaborations to optimize for tariff-resilient geographies and supply lines. Contract research organizations and academic consortia adjusted their sourcing and partnership models to maintain access to critical resources and to preserve continuity in long-running computational projects. These shifts prompted renewed emphasis on data sovereignty and governance, particularly where deploying on-premise solutions became a practical alternative to cloud services subject to cross-border commercial terms.
Importantly, the cumulative impact of the tariff environment accelerated longer-term trends toward resilient infrastructure and supply chain diversification. Institutions that proactively re-architected procurement frameworks and vendor agreements were better positioned to absorb policy shocks and sustain computational discovery pipelines without disruptive interruptions to research timelines.
A layered segmentation framework that maps technology platforms, application use cases, end users, deployment models, and therapeutic priorities to strategic investment decisions
Effective segmentation clarifies where in-silico capabilities deliver the greatest strategic advantage by aligning technology platforms, applications, end users, deployment preferences, and therapeutic priorities. The technology platform dimension encompasses computational chemistry and bioinformatics, high-performance computing, machine learning and AI, and molecular modeling, each contributing unique capabilities from algorithmic prediction to simulation throughput and data integration. Application-focused segmentation highlights admet prediction, lead identification and optimization, pharmacokinetics modeling, target identification and validation, and virtual screening; within admet prediction, practitioners pursue absorption, distribution, excretion, metabolism, and toxicity prediction, while lead identification and optimization relies on de novo design and fragment-based optimization, and virtual screening uses both ligand-based and structure-based approaches.
End-user segmentation distinguishes academic and research institutes, contract research organizations, and pharmaceutical and biotechnology companies, reflecting divergent priorities in exploratory science, projectized service delivery, and product-driven pipelines. Deployment model segmentation separates cloud-based and on-premise solutions, a distinction that informs scalability, cost profiles, and data governance requirements. Therapeutic area segmentation-Cardiovascular, Central Nervous System, Infectious Diseases, and Oncology-illustrates how disease biology influences modeling choices, data needs, and validation standards.
Taken together, these segmentation lenses provide a composite picture that helps leaders prioritize investments, design interoperable workflows, and tailor talent strategies to the technical and regulatory realities of each use case.
Interpreting regional strengths, regulatory nuances, and infrastructure priorities to align in-silico discovery strategies with geographic competitive advantages
Regional dynamics shape competitive positioning, talent availability, regulatory posture, and infrastructure strategy in computational drug discovery, and differences are evident across the Americas, Europe, Middle East & Africa, and Asia-Pacific. The Americas exhibit concentrated hubs of biotech innovation and deep integration between academic centers and industry, fueling collaborative models and access to venture capital and entrepreneurial ecosystems. This concentration supports rapid translation of in-silico methods into early-stage development and commercial partnerships.
In Europe, Middle East & Africa, research institutions often emphasize regulatory alignment and cross-border collaboration, with a growing emphasis on data privacy and sovereignty that influences deployment preferences. Public-private partnerships and pan-regional funding initiatives encourage standardization and interoperability in computational pipelines. The Asia-Pacific region combines large talent pools, growing computational infrastructure investments, and robust manufacturing ecosystems, which together enable rapid scale-up of discovery programs and a pronounced focus on cost-efficient, high-throughput virtual screening strategies.
Across regions, local regulatory expectations, IP frameworks, and workforce specializations inform how organizations select between cloud-based and on-premise deployments, structure collaborations with contract research providers, and prioritize therapeutic areas. Understanding these regional nuances enables leaders to align operational models with local strengths and to design outward-facing partnerships that leverage complementary capabilities across geographies.
How diversified provider capabilities, collaborative partnerships, and rigorous validation practices define competitive differentiation and procurement priorities in computational discovery
The competitive landscape in in-silico discovery is defined more by complementary capabilities and strategic alliances than by a single dominant model. Leading companies differentiate through proprietary algorithms, curated biological datasets, and integrated platforms that combine prediction engines with visualization and workflow orchestration. Others focus on specialized niches such as computational ADMET profiling, fragment-based optimization engines, or high-throughput virtual screening modules, creating a mosaic of providers that enterprises assemble to match project needs.
Partnership activity remains a central driver of capability expansion; collaborations between platform providers and large pharmaceutical companies often cover co-development of model libraries, joint validation studies, and shared access to experimental datasets that enhance predictive performance. Contract research organizations and academic centers also contribute by operationalizing computational outputs within experimental pipelines, thereby shortening feedback loops and improving real-world validation rates. Additionally, mergers and acquisitions continue to rationalize capability stacks, absorbing niche technologies into broader platforms that offer end-to-end discovery support.
For buyers, vendor selection should prioritize reproducibility, model interpretability, data provenance, and the ability to integrate with existing laboratory information management systems. Suppliers that provide transparent validation evidence, flexible deployment models, and robust partnership terms tend to enable the most productive long-term engagements across diverse discovery programs.
Practical operational, governance, and partnership steps for leaders to institutionalize reproducible computational discovery and accelerate translational outcomes
Industry leaders should pursue a set of actionable initiatives to secure sustainable advantage in in-silico drug discovery that combine capability building, governance, and strategic partnerships. First, invest in cross-functional teams that blend computational scientists with experimentalists, data engineers, and regulatory experts to ensure model outputs translate into testable hypotheses and meet compliance needs. Next, prioritize reproducibility and interpretability by instituting standardized validation workflows, version-controlled model registries, and clear documentation of data provenance and preprocessing steps.
Organizations should also diversify their infrastructure strategy by adopting hybrid deployment models that balance the scalability of cloud-based compute with the control and data sovereignty offered by on-premise systems, while negotiating vendor agreements that include portability clauses. Proactively cultivate partnerships with academic centers and contract research organizations to access niche expertise and to accelerate empirical validation of computational predictions. Furthermore, build talent pipelines through targeted hiring, upskilling programs, and secondments that embed computational literacy across discovery groups.
Finally, establish governance frameworks that oversee model risk, data quality, and ethical considerations, ensuring that adoption decisions reflect scientific rigor and regulatory readiness. By aligning these operational priorities with strategic investment themes, leaders can harness computational methods to drive reproducible innovation and measurable translational impact.
A multi-source, triangulated research approach combining technical literature, expert interviews, and validation cross-checks to derive robust insights into computational discovery practices
The research methodology underpinning this analysis combined a multi-source evidence approach, integrating peer-reviewed literature, clinical and molecular databases, patent records, corporate disclosures, and direct expert consultations to construct a coherent view of technological capabilities and industry practices. Secondary sources provided historical context and technical detail on algorithmic advances and computational platforms, while primary interviews with discovery scientists, CIOs, and research executives illuminated operational realities, procurement drivers, and validation practices.
Analytical methods included qualitative synthesis of technological trends, cross-validation of capability claims against published benchmarks, and scenario-based assessments that examined resilience factors such as procurement disruptions, data governance constraints, and deployment trade-offs. Emphasis was placed on reproducibility: model descriptions and validation schemas were compared across sources to identify common standards and divergent practices. Data governance considerations and regulatory influences were analyzed through policy review and practitioner testimony to capture regional nuance.
Limitations include the dynamic evolution of algorithms and the proprietary nature of some validation datasets, which can restrict full external replication. To mitigate these challenges, the methodology prioritized triangulation across independent sources and sought corroboration from multiple stakeholder perspectives. This layered approach ensures the findings reflect both technical feasibility and operational applicability.
Concluding synthesis on how capability integration, governance, and collaborative ecosystems will determine which organizations translate computational insights into therapeutic progress
In-silico drug discovery has entered a phase where technological possibility meets operational necessity, and organizations that align people, processes, and infrastructure will lead the next wave of therapeutic innovation. The integration of computational chemistry, AI-driven modeling, and scalable compute resources enables more focused experimental programs, reduces attrition through earlier triage, and opens exploratory pathways for novel target classes. Success rests on embedding reproducibility, interpretability, and governance into discovery workflows so that computational outputs reliably inform decision-making.
Regional and policy factors, including procurement constraints and data governance requirements, shape infrastructure choices and partnership strategies. Meanwhile, segmentation across platforms, applications, end users, deployment models, and therapeutic areas clarifies where investments yield the highest strategic return and where specialized capabilities are required. Companies that cultivate collaborative ecosystems-linking platform providers, contract researchers, and academic partners-will accelerate validation cycles and increase translational impact.
Ultimately, the future trajectory favors organizations that treat in-silico methods as systemic capabilities rather than point solutions, investing in validation, talent, and interoperable systems that transform predictive insights into concrete experimental advances and clinical potential.
Note: PDF & Excel + Online Access - 1 Year
Table of Contents
187 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Integration of AI-driven generative models with structural bioinformatics to accelerate hit-to-lead optimization
- 5.2. Adoption of quantum computing algorithms to simulate enzyme-ligand interactions for complex target validation
- 5.3. Implementation of multi-omics data fusion platforms for predictive modeling of drug response phenotypes
- 5.4. Deployment of cloud-native high-performance computing clusters for scalable molecular dynamics simulations
- 5.5. Expansion of AI-enabled de novo drug design platforms with active learning for novel scaffold discovery
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. In-Silico Drug Discovery Market, by Technology Platform
- 8.1. Computational Chemistry And Bioinformatics
- 8.2. High Performance Computing
- 8.3. Machine Learning And Ai
- 8.4. Molecular Modeling
- 9. In-Silico Drug Discovery Market, by Deployment Model
- 9.1. Cloud Based
- 9.2. On Premise
- 10. In-Silico Drug Discovery Market, by Therapeutic Area
- 10.1. Cardiovascular
- 10.2. Central Nervous System
- 10.3. Infectious Diseases
- 10.4. Oncology
- 11. In-Silico Drug Discovery Market, by Application
- 11.1. Admet Prediction
- 11.1.1. Absorption Prediction
- 11.1.2. Distribution Prediction
- 11.1.3. Excretion Prediction
- 11.1.4. Metabolism Prediction
- 11.1.5. Toxicity Prediction
- 11.2. Lead Identification And Optimization
- 11.2.1. De Novo Design
- 11.2.2. Fragment Based Optimization
- 11.3. Pharmacokinetics Modeling
- 11.4. Target Identification And Validation
- 11.5. Virtual Screening
- 11.5.1. Ligand Based Virtual Screening
- 11.5.2. Structure Based Virtual Screening
- 12. In-Silico Drug Discovery Market, by End User
- 12.1. Academic And Research Institutes
- 12.2. Contract Research Organizations
- 12.3. Pharmaceutical And Biotechnology Companies
- 13. In-Silico Drug Discovery Market, by Region
- 13.1. Americas
- 13.1.1. North America
- 13.1.2. Latin America
- 13.2. Europe, Middle East & Africa
- 13.2.1. Europe
- 13.2.2. Middle East
- 13.2.3. Africa
- 13.3. Asia-Pacific
- 14. In-Silico Drug Discovery Market, by Group
- 14.1. ASEAN
- 14.2. GCC
- 14.3. European Union
- 14.4. BRICS
- 14.5. G7
- 14.6. NATO
- 15. In-Silico Drug Discovery Market, by Country
- 15.1. United States
- 15.2. Canada
- 15.3. Mexico
- 15.4. Brazil
- 15.5. United Kingdom
- 15.6. Germany
- 15.7. France
- 15.8. Russia
- 15.9. Italy
- 15.10. Spain
- 15.11. China
- 15.12. India
- 15.13. Japan
- 15.14. Australia
- 15.15. South Korea
- 16. Competitive Landscape
- 16.1. Market Share Analysis, 2024
- 16.2. FPNV Positioning Matrix, 2024
- 16.3. Competitive Analysis
- 16.3.1. Abzena Ltd.
- 16.3.2. Aragen Life Sciences Pvt. Ltd.
- 16.3.3. BioDuro LLC
- 16.3.4. BioNTech SE
- 16.3.5. Certara, Inc.
- 16.3.6. Charles River Laboratories International, Inc.
- 16.3.7. Chemical Computing Group ULC
- 16.3.8. ChemPartner PharmaTech Co Ltd
- 16.3.9. Creative Biostructure
- 16.3.10. Curia Global Inc.
- 16.3.11. Evotec SE
- 16.3.12. GenScript Biotech Corporation
- 16.3.13. InSilico Medicine
- 16.3.14. Ligand Pharmaceuticals Incorporated
- 16.3.15. Schrödinger Inc.
- 16.3.16. Selvita S.A.
- 16.3.17. Simulations Plus, Inc.
- 16.3.18. Sygnature Discovery
- 16.3.19. Viva Biotech Holding Group
- 16.3.20. WuXi AppTec
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

