Quantum Cryptography Market by Product Type (Hardware, Services, Software), Organization Size (Large Enterprises, Small & Medium Enterprises), Security Approach, Deployment Mode, End-User Industry, Application - Global Forecast 2025-2032
Description
The Quantum Computing in Healthcare Market was valued at USD 285.24 million in 2024 and is projected to grow to USD 364.51 million in 2025, with a CAGR of 29.88%, reaching USD 2,311.00 million by 2032.
Introduction to quantum computing applications in healthcare and why leaders must understand near-term pathways to clinical and research transformation
Quantum computing is rapidly transitioning from an academic curiosity into a pragmatic technology platform with the potential to address some of healthcare’s most intractable computational challenges. In the near term, advances in hardware, software toolchains, and algorithmic development are enabling domain experts to explore problems that were previously intractable for classical systems, including complex molecular simulations, combinatorial optimization for clinical trial design, and enhanced image analysis pipelines. As these capabilities mature, healthcare organizations must reassess research priorities, data strategies, and procurement timelines to factor in quantum-enabled options.
Critically, the path to adoption will be iterative. Early deployments are likely to prioritize hybrid models that combine classical high-performance computing with quantum accelerators to solve discrete subproblems where quantum advantage is plausible. Consequently, leaders in clinical research, pharmaceuticals, and diagnostics should focus on building multidisciplinary teams that can translate domain-specific challenges into quantum-native formulations. By doing so, organizations can participate in pilot initiatives, shape emerging standards, and position themselves to integrate quantum-augmented workflows as reliable components of R&D and clinical operations.
How quantum technologies are shifting healthcare paradigms from classical compute limitations to accelerated discovery, diagnostics, and personalized treatment
The healthcare landscape is undergoing a transformative shift as quantum technologies begin to address computational bottlenecks that currently constrain discovery and diagnostics. Gate-based systems, photonic processors, and specialized annealing approaches are each advancing at different paces, which means that the practical benefits of quantum methods will emerge in staggered waves across drug discovery, genomics, and imaging. As a result, organizations should expect a differentiated adoption curve: some applications will see performance and capability enhancements within research labs, while others will require sustained engineering investments to reach clinical-grade reliability.
This evolution is also driving changes in collaboration models. Technology providers, academic consortia, and healthcare institutions are forming cross-disciplinary partnerships to co-develop benchmarks, validate algorithms against curated datasets, and iterate on integration strategies. Regulators and standards bodies are beginning to consider the implications of quantum-enabled tools for data integrity, reproducibility, and patient safety, which will influence how pilots are designed and scaled. Therefore, strategic planning must emphasize interoperability, validation pathways, and governance structures to capture the benefits of these transformative technological shifts without compromising clinical outcomes or compliance obligations.
Assessing cumulative effects of projected United States tariffs in 2025 on quantum healthcare supply chains, component sourcing, and cross-border collaboration
Projected changes to tariff policy in 2025 originating from the United States could have meaningful downstream effects on the supply chains that support quantum-enabled healthcare innovation. Many quantum system components-specialized cryogenic hardware, photonic elements, and niche semiconductor devices-are sourced through global suppliers. Tariff increases or reclassifications can raise the landed cost of imported components, extend lead times through customs reviews, and incentivize suppliers to re-evaluate production footprint strategies. For organizations reliant on tightly coordinated hardware delivery schedules, such disruptions can delay pilot timelines and increase project contingency requirements.
In response, healthcare organizations and technology suppliers are likely to accelerate supply-chain resilience measures. These include diversifying supplier portfolios, qualifying alternative components with broader geographic sourcing, and increasing onshore assembly or testing capabilities to reduce exposure to cross-border tariff volatility. Investment in long-lead procurement planning and collaborative forecasting with vendors will become increasingly important. Moreover, legal and procurement teams must work closely with engineering groups to assess total landed costs, ensure compliance with evolving trade classifications, and consider localizing certain manufacturing or assembly activities as a hedge against tariff-driven uncertainty.
Key segmentation insights revealing how components, technologies, applications, and end users intersect to shape quantum-enabled healthcare clinical workflows
Understanding how the quantum healthcare ecosystem segments is essential for building targeted roadmaps that match capability with need. Component-level differentiation highlights the split between hardware, services, and software: hardware investments prioritize systems and peripherals, services encompass managed and professional offerings that support deployment and maintenance, and software covers development kits, programming languages, and simulation platforms that enable algorithm development. Each layer requires distinct expertise and procurement approaches, and organizations should align internal capabilities to ensure smooth integration across these domains.
Technology-focused segmentation draws attention to the varied strengths of gate-based architectures, photonic processors, and quantum annealing approaches. Gate-based systems are driving algorithmic advances in general-purpose quantum computing, photonic processors offer promising paths for scalable, room-temperature implementations, and annealing methods remain particularly well-suited for specific optimization tasks. Application-level segmentation further clarifies use cases: clinical trials optimization, drug discovery, genomics and molecular modeling, and medical imaging analysis each present unique computational requirements and validation pathways. End-user segmentation maps the deployment context, spanning contract research organizations, hospitals and diagnostic centers, pharmaceutical and biotechnology companies, and research institutes, all of which have distinct operational constraints and adoption incentives. By synthesizing these segmentation layers, stakeholders can prioritize pilots, select appropriate technology partners, and define governance structures that accommodate both research rigor and clinical imperatives.
Regional strategic perspectives on quantum computing adoption across the Americas, EMEA, and Asia-Pacific highlighting research ecosystems, talent, and regulatory divergence
Regional dynamics will shape the pace and shape of quantum adoption in healthcare, with each geography exhibiting distinct strengths and policy environments. In the Americas, a strong concentration of venture funding, cloud providers, and leading research universities supports rapid prototyping and public–private collaborations, while regulatory bodies are increasingly focused on ensuring data protection and clinical validation frameworks that accommodate advanced computational methods. In Europe, the Middle East & Africa, institutional research consortia and pan-national initiatives emphasize standards, harmonized regulation, and ethical governance, even as localized innovation hubs push specialized applications in genomics and imaging.
Across Asia-Pacific, diverse trajectories exist from national innovation programs that prioritize quantum hardware development to vibrant private-sector ecosystems that integrate quantum R&D with pharmaceutical and biotech capabilities. Talent distribution, availability of specialized fabrication facilities, and differing approaches to intellectual property also influence strategic choices in each region. For global organizations, regional insights should inform center-of-excellence placement, partnership selection, and regulatory engagement strategies to ensure pilots and scale-up efforts are aligned with local incentives, compliance requirements, and talent availability.
Competitive company intelligence showing how leading vendors, research institutions, and cross-sector partnerships commercialize quantum healthcare offerings
Competitive dynamics in quantum healthcare are defined by a mix of established technology providers, emergent startups, academic spinouts, and life sciences organizations experimenting with new computational paradigms. Hardware vendors are investing in reliability, error mitigation, and system interoperability, while software providers and toolchain developers focus on making quantum programming accessible to domain scientists through improved development kits, languages, and simulation environments. At the same time, service firms are developing managed offerings and professional services to bridge the gap between experimental capabilities and production-grade workflows.
Partnership strategies are central to market positioning. Companies that successfully bundle hardware access with domain-specific software libraries and validation datasets are creating differentiated value propositions for pharmaceutical and clinical research clients. Research institutes and contract research organizations are increasingly serving as neutral validation partners, enabling reproducibility studies and early-stage translational work. Competitive advantage will accrue to organizations that combine robust technical roadmaps with clear clinical validation strategies, transparent reproducibility practices, and scalable service models that reduce integration friction for end users.
Actionable recommendations for industry leaders to accelerate responsible deployment, scale pilots, and align investment with clinical and regulatory priorities
For leaders seeking to harness quantum computing within healthcare operations, a pragmatic, phased approach will yield the best balance of risk and reward. Begin by identifying high-value use cases where quantum methods offer a distinct computational advantage, then design small, time-boxed pilots with clear success criteria and predefined validation datasets. This approach reduces exposure while creating defensible learning assets and repeatable validation procedures that can be scaled across the organization.
Simultaneously, invest in talent and tooling: hire or upskill personnel who can translate domain problems into quantum-ready formulations, adopt interoperable software stacks, and establish partnerships with technology providers that include training and co-development pathways. Governance is equally important; define data management, reproducibility, and clinical validation standards early to ensure pilots generate actionable evidence for regulators and clinical stakeholders. Finally, align procurement and legal frameworks to support flexible sourcing of hardware and software, and create cross-functional steering bodies that can rapidly convert pilot outcomes into deployment decisions and longer-term investment plans.
Transparent research methodology detailing data sources, qualitative and quantitative approaches, expert engagement, and validation steps used to derive insights
This research is grounded in a mixed-methods approach that combines primary qualitative engagement with domain experts and secondary analysis of technical literature and publicly available regulatory guidance. Primary inputs included structured interviews and workshops with clinicians, computational scientists, procurement specialists, and technology developers to triangulate practical constraints, validation needs, and adoption incentives. These conversations informed scenario development and prioritized use cases for deeper technical assessment.
Secondary methods entailed a systematic review of peer-reviewed publications, preprints, standards proposals, and technical whitepapers to identify algorithmic progress, hardware roadmaps, and software toolchain evolution. Where appropriate, methodologies incorporated reproducibility checks using simulation environments and cross-validation with independent expert reviewers. Data synthesis emphasized transparency in assumptions, documentation of validation datasets, and an explicit account of limitations to support confident interpretation of findings by stakeholders with diverse technical and regulatory backgrounds.
Concluding synthesis that integrates technology trends, regulatory implications, clinical opportunities, and strategic next steps for stakeholders
The cumulative assessment integrates technological progress, supply-chain realities, and stakeholder incentives to outline practical pathways for adoption. Advances in hardware and software are expanding the set of tractable problems in drug discovery, genomics, and imaging analysis, while hybrid computational models offer immediately actionable avenues to augment existing pipelines. However, realizing these benefits requires deliberate attention to validation, reproducibility, and regulatory alignment to ensure clinical relevance and patient safety.
Organizations that proactively develop multidisciplinary capabilities, engage in collaborative validation efforts, and build resilient procurement strategies will be best positioned to translate early technical promise into operational value. The balance between experimentation and governance will determine the speed of adoption; those who invest in rigorous pilot designs and transparent reporting will both accelerate learning and reduce deployment risk. In sum, the path forward is iterative but navigable, and stakeholders who combine technical ambition with disciplined validation and strategic partnerships will capture the greatest long-term advantage.
Note: PDF & Excel + Online Access - 1 Year
Introduction to quantum computing applications in healthcare and why leaders must understand near-term pathways to clinical and research transformation
Quantum computing is rapidly transitioning from an academic curiosity into a pragmatic technology platform with the potential to address some of healthcare’s most intractable computational challenges. In the near term, advances in hardware, software toolchains, and algorithmic development are enabling domain experts to explore problems that were previously intractable for classical systems, including complex molecular simulations, combinatorial optimization for clinical trial design, and enhanced image analysis pipelines. As these capabilities mature, healthcare organizations must reassess research priorities, data strategies, and procurement timelines to factor in quantum-enabled options.
Critically, the path to adoption will be iterative. Early deployments are likely to prioritize hybrid models that combine classical high-performance computing with quantum accelerators to solve discrete subproblems where quantum advantage is plausible. Consequently, leaders in clinical research, pharmaceuticals, and diagnostics should focus on building multidisciplinary teams that can translate domain-specific challenges into quantum-native formulations. By doing so, organizations can participate in pilot initiatives, shape emerging standards, and position themselves to integrate quantum-augmented workflows as reliable components of R&D and clinical operations.
How quantum technologies are shifting healthcare paradigms from classical compute limitations to accelerated discovery, diagnostics, and personalized treatment
The healthcare landscape is undergoing a transformative shift as quantum technologies begin to address computational bottlenecks that currently constrain discovery and diagnostics. Gate-based systems, photonic processors, and specialized annealing approaches are each advancing at different paces, which means that the practical benefits of quantum methods will emerge in staggered waves across drug discovery, genomics, and imaging. As a result, organizations should expect a differentiated adoption curve: some applications will see performance and capability enhancements within research labs, while others will require sustained engineering investments to reach clinical-grade reliability.
This evolution is also driving changes in collaboration models. Technology providers, academic consortia, and healthcare institutions are forming cross-disciplinary partnerships to co-develop benchmarks, validate algorithms against curated datasets, and iterate on integration strategies. Regulators and standards bodies are beginning to consider the implications of quantum-enabled tools for data integrity, reproducibility, and patient safety, which will influence how pilots are designed and scaled. Therefore, strategic planning must emphasize interoperability, validation pathways, and governance structures to capture the benefits of these transformative technological shifts without compromising clinical outcomes or compliance obligations.
Assessing cumulative effects of projected United States tariffs in 2025 on quantum healthcare supply chains, component sourcing, and cross-border collaboration
Projected changes to tariff policy in 2025 originating from the United States could have meaningful downstream effects on the supply chains that support quantum-enabled healthcare innovation. Many quantum system components-specialized cryogenic hardware, photonic elements, and niche semiconductor devices-are sourced through global suppliers. Tariff increases or reclassifications can raise the landed cost of imported components, extend lead times through customs reviews, and incentivize suppliers to re-evaluate production footprint strategies. For organizations reliant on tightly coordinated hardware delivery schedules, such disruptions can delay pilot timelines and increase project contingency requirements.
In response, healthcare organizations and technology suppliers are likely to accelerate supply-chain resilience measures. These include diversifying supplier portfolios, qualifying alternative components with broader geographic sourcing, and increasing onshore assembly or testing capabilities to reduce exposure to cross-border tariff volatility. Investment in long-lead procurement planning and collaborative forecasting with vendors will become increasingly important. Moreover, legal and procurement teams must work closely with engineering groups to assess total landed costs, ensure compliance with evolving trade classifications, and consider localizing certain manufacturing or assembly activities as a hedge against tariff-driven uncertainty.
Key segmentation insights revealing how components, technologies, applications, and end users intersect to shape quantum-enabled healthcare clinical workflows
Understanding how the quantum healthcare ecosystem segments is essential for building targeted roadmaps that match capability with need. Component-level differentiation highlights the split between hardware, services, and software: hardware investments prioritize systems and peripherals, services encompass managed and professional offerings that support deployment and maintenance, and software covers development kits, programming languages, and simulation platforms that enable algorithm development. Each layer requires distinct expertise and procurement approaches, and organizations should align internal capabilities to ensure smooth integration across these domains.
Technology-focused segmentation draws attention to the varied strengths of gate-based architectures, photonic processors, and quantum annealing approaches. Gate-based systems are driving algorithmic advances in general-purpose quantum computing, photonic processors offer promising paths for scalable, room-temperature implementations, and annealing methods remain particularly well-suited for specific optimization tasks. Application-level segmentation further clarifies use cases: clinical trials optimization, drug discovery, genomics and molecular modeling, and medical imaging analysis each present unique computational requirements and validation pathways. End-user segmentation maps the deployment context, spanning contract research organizations, hospitals and diagnostic centers, pharmaceutical and biotechnology companies, and research institutes, all of which have distinct operational constraints and adoption incentives. By synthesizing these segmentation layers, stakeholders can prioritize pilots, select appropriate technology partners, and define governance structures that accommodate both research rigor and clinical imperatives.
Regional strategic perspectives on quantum computing adoption across the Americas, EMEA, and Asia-Pacific highlighting research ecosystems, talent, and regulatory divergence
Regional dynamics will shape the pace and shape of quantum adoption in healthcare, with each geography exhibiting distinct strengths and policy environments. In the Americas, a strong concentration of venture funding, cloud providers, and leading research universities supports rapid prototyping and public–private collaborations, while regulatory bodies are increasingly focused on ensuring data protection and clinical validation frameworks that accommodate advanced computational methods. In Europe, the Middle East & Africa, institutional research consortia and pan-national initiatives emphasize standards, harmonized regulation, and ethical governance, even as localized innovation hubs push specialized applications in genomics and imaging.
Across Asia-Pacific, diverse trajectories exist from national innovation programs that prioritize quantum hardware development to vibrant private-sector ecosystems that integrate quantum R&D with pharmaceutical and biotech capabilities. Talent distribution, availability of specialized fabrication facilities, and differing approaches to intellectual property also influence strategic choices in each region. For global organizations, regional insights should inform center-of-excellence placement, partnership selection, and regulatory engagement strategies to ensure pilots and scale-up efforts are aligned with local incentives, compliance requirements, and talent availability.
Competitive company intelligence showing how leading vendors, research institutions, and cross-sector partnerships commercialize quantum healthcare offerings
Competitive dynamics in quantum healthcare are defined by a mix of established technology providers, emergent startups, academic spinouts, and life sciences organizations experimenting with new computational paradigms. Hardware vendors are investing in reliability, error mitigation, and system interoperability, while software providers and toolchain developers focus on making quantum programming accessible to domain scientists through improved development kits, languages, and simulation environments. At the same time, service firms are developing managed offerings and professional services to bridge the gap between experimental capabilities and production-grade workflows.
Partnership strategies are central to market positioning. Companies that successfully bundle hardware access with domain-specific software libraries and validation datasets are creating differentiated value propositions for pharmaceutical and clinical research clients. Research institutes and contract research organizations are increasingly serving as neutral validation partners, enabling reproducibility studies and early-stage translational work. Competitive advantage will accrue to organizations that combine robust technical roadmaps with clear clinical validation strategies, transparent reproducibility practices, and scalable service models that reduce integration friction for end users.
Actionable recommendations for industry leaders to accelerate responsible deployment, scale pilots, and align investment with clinical and regulatory priorities
For leaders seeking to harness quantum computing within healthcare operations, a pragmatic, phased approach will yield the best balance of risk and reward. Begin by identifying high-value use cases where quantum methods offer a distinct computational advantage, then design small, time-boxed pilots with clear success criteria and predefined validation datasets. This approach reduces exposure while creating defensible learning assets and repeatable validation procedures that can be scaled across the organization.
Simultaneously, invest in talent and tooling: hire or upskill personnel who can translate domain problems into quantum-ready formulations, adopt interoperable software stacks, and establish partnerships with technology providers that include training and co-development pathways. Governance is equally important; define data management, reproducibility, and clinical validation standards early to ensure pilots generate actionable evidence for regulators and clinical stakeholders. Finally, align procurement and legal frameworks to support flexible sourcing of hardware and software, and create cross-functional steering bodies that can rapidly convert pilot outcomes into deployment decisions and longer-term investment plans.
Transparent research methodology detailing data sources, qualitative and quantitative approaches, expert engagement, and validation steps used to derive insights
This research is grounded in a mixed-methods approach that combines primary qualitative engagement with domain experts and secondary analysis of technical literature and publicly available regulatory guidance. Primary inputs included structured interviews and workshops with clinicians, computational scientists, procurement specialists, and technology developers to triangulate practical constraints, validation needs, and adoption incentives. These conversations informed scenario development and prioritized use cases for deeper technical assessment.
Secondary methods entailed a systematic review of peer-reviewed publications, preprints, standards proposals, and technical whitepapers to identify algorithmic progress, hardware roadmaps, and software toolchain evolution. Where appropriate, methodologies incorporated reproducibility checks using simulation environments and cross-validation with independent expert reviewers. Data synthesis emphasized transparency in assumptions, documentation of validation datasets, and an explicit account of limitations to support confident interpretation of findings by stakeholders with diverse technical and regulatory backgrounds.
Concluding synthesis that integrates technology trends, regulatory implications, clinical opportunities, and strategic next steps for stakeholders
The cumulative assessment integrates technological progress, supply-chain realities, and stakeholder incentives to outline practical pathways for adoption. Advances in hardware and software are expanding the set of tractable problems in drug discovery, genomics, and imaging analysis, while hybrid computational models offer immediately actionable avenues to augment existing pipelines. However, realizing these benefits requires deliberate attention to validation, reproducibility, and regulatory alignment to ensure clinical relevance and patient safety.
Organizations that proactively develop multidisciplinary capabilities, engage in collaborative validation efforts, and build resilient procurement strategies will be best positioned to translate early technical promise into operational value. The balance between experimentation and governance will determine the speed of adoption; those who invest in rigorous pilot designs and transparent reporting will both accelerate learning and reduce deployment risk. In sum, the path forward is iterative but navigable, and stakeholders who combine technical ambition with disciplined validation and strategic partnerships will capture the greatest long-term advantage.
Note: PDF & Excel + Online Access - 1 Year
Table of Contents
194 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Integration of quantum key distribution with existing telecom infrastructure to secure data transmission across long distances
- 5.2. Advances in photonic chip-based quantum cryptography systems enabling scalable metropolitan network deployments
- 5.3. Emergence of satellite-based quantum key distribution networks for truly global secure communication channels
- 5.4. Development of post-quantum cryptography hybrid solutions to mitigate emerging quantum computing threats across industries
- 5.5. Regulatory frameworks evolving to standardize quantum-safe encryption protocols in global financial services and payments
- 5.6. Adoption of quantum random number generators in cloud security to strengthen cryptographic resilience against side channel attacks
- 5.7. Collaborative research initiatives between technology consortiums and academia accelerating commercialization of quantum cryptography solutions
- 5.8. Integration of AI-driven anomaly detection with quantum encryption to enhance real-time cybersecurity defenses in enterprise networks
- 5.9. Breakthroughs in entanglement distribution techniques promising multi-node quantum cryptography networks with reduced error rates
- 5.10. Growing government investments accelerate satellite-based quantum key distribution deployment
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. Quantum Cryptography Market, by Product Type
- 8.1. Hardware
- 8.1.1. Quantum Key Distribution Devices
- 8.1.2. Quantum Key Management
- 8.1.3. Quantum Random Number Generators
- 8.2. Services
- 8.2.1. Managed Services
- 8.2.2. Professional Services
- 8.3. Software
- 8.3.1. Encryption Software
- 8.3.2. Simulation & Modelling Tools
- 9. Quantum Cryptography Market, by Organization Size
- 9.1. Large Enterprises
- 9.2. Small & Medium Enterprises
- 10. Quantum Cryptography Market, by Security Approach
- 10.1. Post-Quantum Cryptography
- 10.1.1. Hash-Based Cryptography
- 10.1.2. Lattice-Based Cryptography
- 10.2. Quantum Key Distribution
- 10.2.1. Continuous-Variable QKD
- 10.2.2. Discrete-Variable QKD
- 10.3. Symmetric Key Cryptography
- 10.3.1. Block Ciphers
- 10.3.2. Stream Ciphers
- 11. Quantum Cryptography Market, by Deployment Mode
- 11.1. Cloud-Based
- 11.2. On-Premise
- 12. Quantum Cryptography Market, by End-User Industry
- 12.1. Automotive
- 12.2. Banking, Financial Services, & Insurance
- 12.3. Healthcare & Life Sciences
- 12.4. IT & Telecommunications
- 12.5. Military & Defense
- 13. Quantum Cryptography Market, by Application
- 13.1. Data Protection
- 13.2. Network Security
- 13.3. Secure Communication
- 13.4. Secure Transactions
- 14. Quantum Cryptography Market, by Region
- 14.1. Americas
- 14.1.1. North America
- 14.1.2. Latin America
- 14.2. Europe, Middle East & Africa
- 14.2.1. Europe
- 14.2.2. Middle East
- 14.2.3. Africa
- 14.3. Asia-Pacific
- 15. Quantum Cryptography Market, by Group
- 15.1. ASEAN
- 15.2. GCC
- 15.3. European Union
- 15.4. BRICS
- 15.5. G7
- 15.6. NATO
- 16. Quantum Cryptography Market, by Country
- 16.1. United States
- 16.2. Canada
- 16.3. Mexico
- 16.4. Brazil
- 16.5. United Kingdom
- 16.6. Germany
- 16.7. France
- 16.8. Russia
- 16.9. Italy
- 16.10. Spain
- 16.11. China
- 16.12. India
- 16.13. Japan
- 16.14. Australia
- 16.15. South Korea
- 17. Competitive Landscape
- 17.1. Market Share Analysis, 2024
- 17.2. FPNV Positioning Matrix, 2024
- 17.3. Competitive Analysis
- 17.3.1. Amazon Web Services, Inc.
- 17.3.2. Aurea Technology SAS
- 17.3.3. Crypta Labs Limited
- 17.3.4. Entrust Corporation
- 17.3.5. HEQA Security
- 17.3.6. Hewlett-Packard Development Company, L.P.
- 17.3.7. ID Quantique SA
- 17.3.8. Infineon Technologies AG
- 17.3.9. Intel Corporation
- 17.3.10. International Business Machines Corporation
- 17.3.11. ISARA Corporation
- 17.3.12. MagiQ Technologies, Inc.
- 17.3.13. Microsoft Corporation
- 17.3.14. Mitsubishi Electric Corporation
- 17.3.15. NEC Corporation
- 17.3.16. NXP Semiconductors N.V.
- 17.3.17. PQ Solutions Limited
- 17.3.18. Quantum Xchange, Inc.
- 17.3.19. QuBalt GmbH
- 17.3.20. IonQ, Inc.
- 17.3.21. QuintessenceLabs Pty Ltd.
- 17.3.22. QuNu Labs Private Limited
- 17.3.23. QuSecure, Inc.
- 17.3.24. SSH Communications Security, Inc.
- 17.3.25. Thales Group
- 17.3.26. Toshiba Corporation
- 17.3.27. VeriQloud
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

