Report cover image

Oncology Information Systems Market by Offering (Services, Solution), Functionality (Billing & Revenue Cycle Management, Clinical Decision Support, Patient Information & Care Management), Deployment Mode, Application, End User - Global Forecast 2025-2032

Publisher 360iResearch
Published Dec 01, 2025
Length 183 Pages
SKU # IRE20624012

Description

The Oncology Information Systems Market was valued at USD 7.37 billion in 2024 and is projected to grow to USD 7.91 billion in 2025, with a CAGR of 7.78%, reaching USD 13.42 billion by 2032.

A modern orientation to oncology information systems emphasizing interoperability, clinician-centered workflows, enterprise integration, and long-term strategic value

The oncology care continuum is being reshaped by an accelerating need for interoperable, data-driven information systems that align clinical workflows with patient outcomes. As therapeutic complexity intensifies and multidisciplinary care becomes the norm, institutions must reconcile disparate data streams-imaging, pathology, genomics, treatment planning, and electronic health records-into coherent, actionable patient journeys. This introduction frames the strategic role of oncology information systems in enabling safer, more personalized care pathways while supporting administrative efficiency and regulatory compliance.

Clinical teams increasingly demand systems that reduce manual coordination overhead and surface decision-critical information at the point of care. At the same time, administrative stakeholders seek platforms that improve billing accuracy, streamline revenue cycle operations, and produce auditable records for quality programs and reimbursement negotiations. Technology leaders are therefore tasked with balancing clinician usability, enterprise integration, and long-term maintainability when evaluating oncology information solutions.

Transitioning from legacy, siloed applications to modern, connected platforms requires deliberate governance and an emphasis on modular architectures that support incremental adoption. This introduction highlights the convergence of clinical imperatives, operational pressures, and technological maturity that make oncology information systems a central pillar of contemporary cancer care strategy.

How artificial intelligence, cloud-native services, federated data models, and clinician-centered integration are redefining oncology information system strategies

The landscape of oncology information systems is experiencing transformative shifts driven by advances in artificial intelligence, cloud services, federated data models, and an imperative for seamless clinical integration. AI and machine learning are moving beyond pilot phases into embedded clinical decision support that augments diagnostic interpretation, automates routine annotation tasks, and accelerates treatment-planning workflows. These capabilities are catalyzing value by reducing time-to-decision and enabling more precise resource allocation across multidisciplinary teams.

Cloud adoption is another inflection point, enabling scalable compute for image analysis and genomic workloads while supporting distributed care models and remote collaboration. Concurrently, there is a discernible push toward vendor-neutral architectures and standards-based interoperability to break down data silos between EHRs, PACS, radiation planning systems, and laboratory platforms. This shift reduces integration overhead and increases flexibility for operators to adopt best-in-class modules rather than relying on monolithic stacks.

Regulatory expectations and payer-driven value frameworks are changing how systems are designed, with an increased emphasis on real-world evidence capture, outcome measurement, and auditable compliance reporting. Security and data governance have therefore become integral to system roadmaps, with investments in encryption, identity management, and threat detection that are commensurate with the sensitivity of oncology data. In parallel, workforce dynamics-such as clinician burnout and the need for upskilling-are influencing interface design, automation priorities, and change-management approaches adopted during deployment.

Taken together, these transformative shifts create an environment in which agility, openness, and evidence-generation capabilities define long-term winners. Organizations that align technology adoption with clinical, operational, and financial objectives will be best positioned to translate innovation into measurable improvements in patient care and organizational resilience.

Assessing the systemic procurement, supply chain, and deployment implications for oncology information systems resulting from the United States tariffs introduced in 2025

The cumulative effects of tariffs introduced in 2025 in the United States have introduced new considerations across procurement, supply chain resilience, and total cost of ownership for oncology information systems and associated imaging and treatment hardware. While tariffs primarily affect imported hardware components and turnkey imaging systems, they have indirect implications for software procurement through differential pricing of bundled offerings and potential delays in vendor supply chains that integrate hardware with clinical software stacks.

Manufacturers and vendors facing higher import duties have adjusted their commercial models by shifting manufacturing footprints, renegotiating supplier contracts, and occasionally passing increased costs to buyers. Healthcare providers are responding by expanding their evaluation criteria beyond sticker price to include lead times, service agreements, and spare parts availability. These dynamics place a premium on vendors with diversified manufacturing locations, robust local service networks, and transparent total-cost analyses that reflect tariff exposures.

Over the medium term, tariffs have incentivized deeper collaboration between providers and vendors to manage inventory risk and to explore hybrid procurement strategies such as long-term maintenance contracts or strategic stocking of critical components. For software-heavy solutions, the impact is less direct, yet integration and deployment timelines tied to hardware deliveries have lengthened in some cases, necessitating contingency planning for clinical rollouts. Additionally, policy uncertainty has elevated the importance of contractual clauses addressing import duties, compliance with trade regulations, and mutual responsibilities during supply disruptions.

In this evolving policy environment, decision-makers must balance near-term budget pressures with long-term strategic goals. Prioritizing interoperability, modular procurement, and supplier diversity will reduce exposure to localized trade shocks while enabling continuity of care and predictable upgrade cycles.

Segment-specific imperatives driven by offering portfolios, functionality expectations, deployment preferences, clinical application domains, and end-user operational needs

Segment-driven insights reveal differentiated priorities and adoption patterns that should shape product roadmaps and go-to-market strategies. Based on Offering, the market encompasses Services across consulting and training, installation and integration, and maintenance and support alongside Solutions that include chemotherapy information systems, clinical integration solutions, laboratory information systems, advanced imaging visualization, oncology electronic health records, PACS and vendor-neutral archives, radiation treatment planning, and radiology information systems. Across this offering spectrum, buyers value end-to-end service continuity paired with modular solution capabilities that permit phased implementation and minimize clinical disruption.

Based on Functionality, systems that optimize billing and revenue cycle management, strengthen clinical decision support, manage patient information and care coordination, satisfy regulatory compliance and reporting requirements, and streamline treatment planning and scheduling are commanding strategic attention. Buyers increasingly seek embedded decision support that is explainable, revenue-cycle modules that align with evolving payer requirements, and scheduling systems that coordinate complex multimodality treatment regimens.

Based on Deployment Mode, the dichotomy between cloud-based and on-premise options persists, but hybrid models are emerging as a pragmatic compromise. Cloud-based deployments appeal for their scalability, native collaboration features, and reduced up-front infrastructure costs, whereas on-premise arrangements remain preferred where data residency, latency, or institutional policy dictate local control. Architectural flexibility that enables seamless transition between models without major workflow disruption is a differentiator.

Based on Application, distinct clinical domains-medical oncology, radiation oncology, and surgical oncology-exhibit unique data flows, integration needs, and performance criteria. Medical oncology platforms prioritize chemotherapy regimen management and adverse-event tracking, radiation oncology systems emphasize precision treatment planning and dose verification, and surgical oncology solutions require perioperative coordination and intraoperative imaging interoperability.

Based on End User, the needs of ablation and cancer care centers, hospitals and diagnostic imaging centers, and research facilities vary considerably. Ablation and cancer care centers often prioritize streamlined outpatient workflows and treatment scheduling, hospitals and imaging centers demand enterprise-grade interoperability and enterprise imaging capabilities, and research facilities require sophisticated data export, annotation, and analytic capabilities to support trials and translational research. Understanding these segmentation vectors helps vendors align product development, pricing strategies, and service models to distinct buyer personas and procurement cycles.

How regional policy, infrastructure maturity, and clinical priorities across the Americas, Europe Middle East & Africa, and Asia-Pacific are shaping oncology information system adoption

Regional dynamics are shaping adoption priorities and investment patterns in oncology information systems in distinct ways. In the Americas, health systems are focused on integrating oncology workflows with enterprise EHR platforms while navigating reimbursement reforms and value-based care initiatives that demand robust outcome tracking. The region also exhibits strong appetite for cloud-enabled collaboration tools and advanced analytics as institutions seek to optimize care pathways across large, geographically dispersed networks.

In Europe, Middle East & Africa, divergent regulatory regimes and varying infrastructure maturity create a heterogeneous landscape where interoperability standards and data residency rules are paramount. Investment is frequently concentrated in centers of excellence and national health programs that prioritize standardized clinical pathways and population-level analytics. Within this regional context, vendors must tailor compliance capabilities and localization strategies to meet country-specific requirements while offering scalable platforms for cross-border research collaborations.

In the Asia-Pacific region, rapid modernization of private and public healthcare infrastructure, a growing oncology caseload, and strong government-driven digitization efforts are driving demand for integrated information systems. Providers are often focused on solutions that enable high-throughput imaging workflows, support large-scale screening programs, and integrate telehealth capabilities. Moreover, cost-sensitive procurement environments are encouraging adoption of modular, cloud-first solutions that accelerate time-to-value while enabling local customization and language support.

Across regions, geopolitical and policy developments influence procurement risk profiles and partnership strategies. Vendors that offer clear deployment choices, robust localization, and evidence of regulatory compliance will be better positioned to capture regional opportunities and support cross-market scaling.

An ecosystem analysis revealing how incumbents, niche specialists, and AI-native entrants are competing and collaborating to define the future of oncology information systems

Competitive dynamics in the oncology information systems space are characterized by a blend of established enterprises, niche specialists, and rapidly emerging technology entrants. Established enterprise EHR vendors continue to leverage broad customer footprints and deep integration across hospital systems, while oncology-focused vendors differentiate through domain-specific workflows, treatment-planning expertise, and closer alignment to multidisciplinary oncology teams. Imaging and radiation equipment suppliers are also integrating software services to create bundled offerings that combine hardware, clinical applications, and lifecycle support.

In parallel, startups and AI-native companies are accelerating innovation cycles by delivering targeted capabilities in image analysis, automated segmentation, and clinical decision augmentation. These newcomers often partner with incumbent vendors to access distribution channels and validated clinical datasets. Strategic partnerships, mergers, and technology licensing arrangements are therefore common as larger organizations seek to fill functional gaps and as smaller firms look to scale rapidly.

Service providers offering consulting, implementation, and managed services play a critical role in adoption, particularly for complex, multi-center deployments. Their ability to manage change, provide clinician training, and ensure that integrations perform reliably in production environments is a differentiator. Success in competitive positioning increasingly depends on demonstrable outcomes, interoperability credentials, and the ability to support hybrid deployment models while ensuring continuity of care during technology transitions.

Actionable strategic guidance for healthcare leaders and vendors emphasizing interoperability, clinician adoption, supply chain resilience, regulatory design, and evidence generation

Leaders in healthcare delivery and vendor organizations should take deliberate actions to translate technological promise into clinical and operational gains. First, prioritize interoperability by adopting standards-first architectures and investing in APIs, FHIR-enabled exchanges, and vendor-neutral archives that permit seamless data flow between oncology modules, EHRs, imaging systems, and laboratory platforms. Emphasize modularity in procurement to allow staged rollouts that reduce clinical disruption and accelerate measurable value realization.

Second, accelerate clinical adoption through focused change management, clinician co-design, and role-based interfaces that reduce cognitive load. Pair automation initiatives with robust validation and explainability frameworks so clinicians can trust decision support tools and understand their limitations. Invest in workflow optimization to ensure that new systems reduce administrative burden rather than merely shifting it.

Third, build supply chain resilience by diversifying supplier relationships, negotiating transparent service and spare-parts agreements, and including tariff- and trade-related contingencies in contracts. Consider hybrid deployment patterns that preserve critical local control while leveraging cloud capabilities for compute-intensive tasks such as AI-enabled image processing.

Fourth, embed regulatory and privacy-by-design principles across product lifecycles, ensuring that data governance, consent management, and auditability are core features rather than afterthoughts. Strengthen cybersecurity posture through continuous monitoring, identity and access controls, and incident response planning that aligns with clinical continuity requirements.

Finally, cultivate evidence-generation capabilities through partnerships with research institutions and pragmatic trial designs that demonstrate clinical utility, cost-effectiveness, and patient-centered outcomes. Use those results to inform payer engagement and to create compelling value propositions that support reimbursement discussions and long-term adoption.

A transparent mixed-methods research framework combining primary stakeholder interviews, expert validation, and rigorous secondary synthesis to produce actionable oncology information system insights

The research underpinning this analysis employed a mixed-methods approach that combined primary qualitative interviews, expert advisory validation, and comprehensive secondary literature synthesis to ensure robustness and credibility. Primary inputs included structured interviews with clinical leaders, health IT executives, procurement officers, and vendor product strategists, providing front-line perspectives on workflow challenges, procurement drivers, and deployment experiences.

Secondary research encompassed peer-reviewed literature, regulatory guidance documents, vendor technical briefs, and white papers focused on clinical workflows, integration standards, and technology performance. Data triangulation methods were applied to reconcile divergent inputs and to validate assumptions about deployment preferences, functionality prioritization, and regional adoption patterns. Where available, anonymized case studies and implementation retrospectives were used to illustrate common challenges and successful mitigation strategies.

Analyst review and subject-matter expert panels were convened to validate findings, refine segmentation frameworks, and test the practical relevance of recommendations. Throughout the process, emphasis was placed on transparency of assumptions, reproducibility of methodology, and clarity about limitations-particularly in areas influenced by evolving policy environments and nascent technology adoption curves. This layered methodology supports reliable, action-oriented insights that are grounded in frontline experience and documented practice.

A synthesis of technological promise, operational discipline, and policy awareness that defines pragmatic pathways to successful oncology information system adoption

In conclusion, the trajectory of oncology information systems is defined by an imperative to unify complex clinical data, support multidisciplinary decision-making, and enable evidence-driven care models. Technological advances in artificial intelligence, cloud computing, and standards-based interoperability present tangible opportunities to improve clinical efficiency and patient outcomes, provided that deployments are guided by clinician needs, robust governance, and supply chain foresight.

Policy developments, including trade measures and regional regulatory variations, create additional layers of complexity that must be proactively managed through diversified supplier strategies and contractual clarity. The segmentation of the market by offering, functionality, deployment mode, clinical application, and end user underscores the need for tailored approaches rather than one-size-fits-all solutions. Organizations that pair strategic clarity with disciplined execution-focusing on integration, security, and evidence generation-will realize the greatest benefits from their technology investments.

Ultimately, the most successful implementations will combine technical excellence with deep operational alignment: prioritizing user experience, ensuring data integrity, and demonstrating measurable impact on clinical workflows and patient journeys. This synthesis offers a practical roadmap for decision-makers seeking to navigate a rapidly evolving technology landscape while preserving continuity of high-quality oncology care.

Note: PDF & Excel + Online Access - 1 Year

Table of Contents

183 Pages
1. Preface
1.1. Objectives of the Study
1.2. Market Segmentation & Coverage
1.3. Years Considered for the Study
1.4. Currency
1.5. Language
1.6. Stakeholders
2. Research Methodology
3. Executive Summary
4. Market Overview
5. Market Insights
5.1. AI-driven predictive analytics integration in oncology information systems for personalized treatment planning
5.2. Integration of comprehensive genomic sequencing data into oncology information platforms for precision medicine
5.3. Cloud-based oncology information systems enabling secure remote collaboration across multidisciplinary care teams
5.4. Implementation of HL7 FHIR interoperability standards for seamless oncology data exchange and reporting
5.5. Advanced patient-reported outcome tracking modules for real-time quality-of-life insights in cancer care
5.6. Machine learning algorithms predicting adverse drug reactions from electronic oncology records for improved safety monitoring
5.7. Teleoncology virtual care integration in oncology information systems to expand rural patient access and support
6. Cumulative Impact of United States Tariffs 2025
7. Cumulative Impact of Artificial Intelligence 2025
8. Oncology Information Systems Market, by Offering
8.1. Services
8.1.1. Consulting & Training
8.1.2. Installation & Integration
8.1.3. Maintenance & Support
8.2. Solution
8.2.1. Chemotherapy Information System
8.2.2. Clinical Integration Solutions
8.2.3. Laboratory Information Systems (LIS)
8.2.4. Medical Image Analysis & Advanced Visualization
8.2.5. Oncology Electronic Health Record (EHR)
8.2.6. Picture Archiving & Communication System (PACS) & Vendor-Neutral Archive (VNA)
8.2.7. Radiation Treatment Planning System
8.2.8. Radiology Information Systems (RIS)
9. Oncology Information Systems Market, by Functionality
9.1. Billing & Revenue Cycle Management
9.2. Clinical Decision Support
9.3. Patient Information & Care Management
9.4. Regulatory Compliance & Reporting
9.5. Treatment Planning & Scheduling
10. Oncology Information Systems Market, by Deployment Mode
10.1. Cloud-Based
10.2. On-Premise
11. Oncology Information Systems Market, by Application
11.1. Medical Oncology
11.2. Radiation Oncology
11.3. Surgical Oncology
12. Oncology Information Systems Market, by End User
12.1. Ablation & Cancer Care Centers
12.2. Hospitals & Diagnostic Imaging Centers
12.3. Research Facilities
13. Oncology Information Systems Market, by Region
13.1. Americas
13.1.1. North America
13.1.2. Latin America
13.2. Europe, Middle East & Africa
13.2.1. Europe
13.2.2. Middle East
13.2.3. Africa
13.3. Asia-Pacific
14. Oncology Information Systems Market, by Group
14.1. ASEAN
14.2. GCC
14.3. European Union
14.4. BRICS
14.5. G7
14.6. NATO
15. Oncology Information Systems Market, by Country
15.1. United States
15.2. Canada
15.3. Mexico
15.4. Brazil
15.5. United Kingdom
15.6. Germany
15.7. France
15.8. Russia
15.9. Italy
15.10. Spain
15.11. China
15.12. India
15.13. Japan
15.14. Australia
15.15. South Korea
16. Competitive Landscape
16.1. Market Share Analysis, 2024
16.2. FPNV Positioning Matrix, 2024
16.3. Competitive Analysis
16.3.1. Accuray Incorporated
16.3.2. Advanced Data Systems Corporation
16.3.3. CompuGroup Medical, Inc.
16.3.4. CureMD.com, Inc.
16.3.5. DOSIsoft SA
16.3.6. Elekta AB
16.3.7. EndoSoft LLC by Utech Products Inc.
16.3.8. Epic Systems Corporation
16.3.9. F. Hoffmann-La Roche Ltd.
16.3.10. FUJIFILM Corporation
16.3.11. GE HealthCare Technologies Inc.
16.3.12. International Business Machines Corporation
16.3.13. Karkinos Healthcare Private Limited
16.3.14. McKesson Corporation
16.3.15. Medical Information Technology, Inc.
16.3.16. MICA Information Systems, Inc.​​
16.3.17. N-Power Medicine, Inc.
16.3.18. NextGen Healthcare, Inc.
16.3.19. Novarad Corporation
16.3.20. Oracle Corporation
16.3.21. RaySearch Laboratories
16.3.22. Royal Philips
16.3.23. Tempus AI, Inc.
16.3.24. Varian Medical Systems, Inc. by Siemens Healthineers AG
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.