NGS Data Storage Market by Storage Type (Hardware, Services, Software), Sequencing Platform (Long Read Sequencing, Short Read Sequencing), Data Type, Deployment Mode, End User - Global Forecast 2025-2032
Description
The NGS Data Storage Market was valued at USD 1.17 billion in 2024 and is projected to grow to USD 1.29 billion in 2025, with a CAGR of 10.29%, reaching USD 2.57 billion by 2032.
Framing the challenges and strategic priorities for next-generation sequencing data storage to enable secure, efficient, and reproducible research and clinical workflows
Next-generation sequencing has transformed biological research and clinical practice, creating unprecedented volumes of raw and derived data that demand a reexamination of storage strategy, operational workflows, and governance frameworks. As sequencing throughput rises and analytic sophistication increases, organizations face a confluence of technical, regulatory, and cost pressures that require a structured response. This introduction frames the central operational challenges-data lifecycle management, reproducibility, security, and long-term preservation-and situates them within broader institutional priorities such as accelerating discovery, enabling precision medicine, and safeguarding patient privacy.
The discussion begins by acknowledging the heterogeneity of storage needs across raw sequence outputs, intermediate processed files, and long-term archives. It then describes how storage type choices interact with deployment models and downstream analytics, shaping total cost of ownership and time-to-insight. The narrative closes by highlighting the necessity for cross-functional governance: IT architects, bioinformaticians, compliance officers, and procurement teams must align on policies for encryption, access control, and data retention to convert storage from a passive repository into an active enabler of scientific and clinical value.
How technological convergence, evolving service models, and hybrid deployment architectures are rapidly redefining sequencing data storage strategies across research and clinical environments
The landscape for sequencing data storage is being reshaped by a set of transformative shifts that affect technological choices, supplier models, and institutional practices. First, hardware advances are driving denser, more energy-efficient storage media that reduce physical footprint and improve reliability, while parallel innovations in data compression and content-addressable storage are changing how repositories organize and present genomic assets. At the same time, services such as systems integration, consulting, and ongoing support and maintenance are becoming integral to deployments, as specialized expertise is required to tune performance and ensure compliance in regulated environments.
Concurrently, software stacks for data management and security are maturing, introducing capabilities for metadata-driven retrieval, policy-based tiering, and automated lifecycle workflows that reduce manual overhead. Deployment modes are shifting toward hybrid configurations that combine on-premises control for sensitive workloads with cloud scalability for burst compute and collaboration. This hybrid orientation is reinforced by platform-agnostic orchestration layers that enable consistent policies regardless of underlying infrastructure. End users-ranging from academic and government research labs to clinical hospitals and biotech companies of varying sizes-are demanding tailored solutions that reflect their distinct regulatory obligations, collaboration patterns, and budgetary constraints. Lastly, the sequencing technology split between long-read systems and high-throughput short-read platforms continues to influence file formats, throughput management, and storage access patterns, requiring adaptable architectures that can simultaneously serve archival and low-latency analytic needs.
Assessing how shifts in U.S. tariff policy in 2025 are prompting procurement, architecture, and vendor strategy changes that materially affect sequencing data storage operations
Policy and tariff dynamics in 2025 have introduced new operational considerations for organizations that procure storage hardware, integrate systems, or contract cloud services through international supply chains. Changes to U.S. tariff schedules for hardware components and finished storage arrays have altered procurement timing and sourcing strategies, prompting procurement teams to re-evaluate supplier diversification, inventory lead times, and total landed cost even as they avoid short-term disruption to active research programs. The cumulative impact has been a renewed focus on contractual flexibility and forward-looking vendor agreements that incorporate price adjustment clauses and alternate supply pathways.
These tariff pressures also incentivize greater adoption of software-centric approaches that decouple value from hardware economics. When hardware tariffs increase capital expense or extend delivery windows, organizations often accelerate investments in data compression, deduplication, and tiering software to minimize immediate capacity needs. In parallel, cloud-based services and managed offerings become more attractive because they shift exposure to capital-market fluctuations and tariffs onto the service provider. However, reliance on external providers increases the importance of due diligence related to data sovereignty, cross-border transfer rules, and vendor continuity plans.
In practice, research institutions and clinical laboratories have responded by broadening their vendor bases, negotiating extended warranties and maintenance support, and staging refresh cycles to smooth out procurement spikes. Transitional strategies frequently combine retaining critical on-premises capacity for sensitive datasets while leveraging external compute and temporary storage in jurisdictions with stable trade relationships. These hybrid approaches balance resilience, regulatory compliance, and cost efficiency in the face of tariff-driven uncertainty.
In-depth segmentation insights revealing how storage type, deployment mode, end-user profiles, sequencing platforms, and data types collectively determine architecture and policy choices
A nuanced segmentation-based view reveals how storage priorities diverge by functional role, deployment expectation, and data fidelity requirements. When examined through the prism of storage type, hardware solutions remain essential for high-throughput, low-latency workloads while services-spanning consulting, integration, and support and maintenance-play a decisive role in successful implementations by bridging bioinformatics needs and IT operations; software categories such as data compression, data management, and data security increasingly determine operational efficiency and regulatory readiness. Deployment mode considerations further differentiate strategies: cloud deployments, whether public or private, offer elasticity for bursty analytics; hybrid deployments provide a pragmatic middle ground, enabling localized control for sensitive data while leveraging external resources; and on-premises deployments continue to be favored where latency, sovereignty, or institutional policy dictate.
End-user segmentation underscores how use cases and organizational scale influence architectural choices. Academic and research institutes, including government research labs and universities, often prioritize collaboration, reproducibility, and grant budget constraints, leading to tiered architectures and shared infrastructure models. Healthcare providers like hospitals and clinics focus on patient privacy, integration with clinical systems, and seamless regulatory audits, which demand robust encryption, access logging, and validated workflows. Pharmaceutical and biotechnology companies span a spectrum from biotech SMEs that need flexible, cost-efficient solutions to large pharma organizations that emphasize validated, enterprise-grade systems and consolidated governance. Sequencing platform distinctions further shape storage requirements: long-read technologies from providers focused on continuous streaming and large file sizes require architectures optimized for sustained ingest and variable file sizes, whereas short-read platforms generate high-volume, smaller files with predictable batch patterns that benefit from parallelized ingest and indexable metadata. Finally, data type considerations-spanning archived cold storage and tape, processed artifacts such as BAM and VCF, and raw BCL and FASTQ outputs-dictate lifecycle policies, tiering strategies, and retrieval SLAs. Taken together, these segmentation lenses guide solution selection, highlight integration complexity, and prioritize areas for automation and policy enforcement.
Critical regional considerations for sequencing data storage that shape procurement practices, regulatory compliance strategies, and collaborative research models across global markets
Regional dynamics exert a measurable influence on procurement behavior, regulatory priorities, and collaboration patterns. In the Americas, a concentration of large academic centers, clinical networks, and biotech clusters drives demand for integrated solutions that support translational research and clinical trials; institutions in this region emphasize acceleration of time-to-result, integration with electronic health systems, and adherence to stringent privacy regimes. Europe, the Middle East and Africa present a more heterogeneous regulatory landscape where cross-border collaborations and data sovereignty concerns require carefully designed governance controls, localized encryption practices, and awareness of divergent retention mandates; public sector research labs and national genomics initiatives often lead adoption patterns and set interoperability expectations. Asia-Pacific spurs innovation through rapid sequencing adoption and significant investments in genomic medicine, but organizations encounter diverse infrastructure maturity levels, differing regulatory approaches to patient data, and logistical challenges that favor modular, scalable architectures and partnerships with regional service providers.
Transitioning across these regions, there is a common trajectory: rising data volumes and multi-institutional collaborations compel organizations to harmonize metadata standards, adopt interoperable transfer protocols, and invest in staff skills for data stewardship. Consequently, regional strategies blend local control with global collaboration capabilities to enable reproducible science while meeting regulatory and operational constraints.
How hardware manufacturers, software innovators, and managed service providers are constructing an integrated ecosystem to meet the specialized demands of sequencing data storage and governance
The competitive landscape in sequencing data storage is characterized by a mix of hardware vendors, software innovators, and managed service providers that together create an ecosystem of interoperable components. Hardware manufacturers are differentiating through performance, energy efficiency, and service networks that support scientific workloads, while software providers compete on metadata management, automated tiering, and robust encryption designed for regulated environments. Managed service providers and systems integrators are increasingly important, offering end-to-end project delivery that spans initial architecture, data migration, validation, and long-term support. Partnerships between storage vendors and domain-specific analytics companies are accelerating the development of turnkey offerings for life sciences customers, reducing integration friction and shortening time to operational maturity.
Institutional buyers evaluate partners on technical depth, compliance track record, and flexibility to accommodate heterogeneous sequencing platforms and file formats. Key selection criteria include the ability to ingest diverse data types efficiently, maintain chain-of-custody for clinical datasets, and provide transparent performance telemetry for capacity and access. Vendors that invest in professional services, certification programs, and community-driven integrations are better positioned to capture long-term relationships with research consortia, hospital systems, and pharmaceutical R&D groups. Over time, competitive differentiation will hinge on the capacity to offer seamless hybrid deployments, strong lifecycle automation, and predictable support for evolving regulatory requirements.
Actionable, prioritized recommendations for building resilient, compliant, and cost-effective sequencing data storage strategies that align with scientific and clinical goals
Industry leaders can take several practical steps to ensure storage strategy aligns with scientific objectives, regulatory obligations, and operational realities. First, organizations should codify data lifecycle policies that distinctly classify raw, processed, and archived data and map each classification to explicit retention, encryption, and access controls. Second, adopt a hybrid-first infrastructure strategy that maintains on-premises control for sensitive or latency-critical datasets while leveraging cloud elasticity for batch analytics and collaboration; this approach reduces exposure to supply chain shocks and tariffs while enabling scalable compute. Third, prioritize investments in data management software-specifically in compression, deduplication, and searchable metadata layers-to reduce storage footprint and accelerate retrieval without compromising data fidelity.
Additionally, organizations should strengthen vendor governance through multi-supplier procurement, well-defined service-level objectives, and contractual clauses that address price variability and continuity of service. Workforce development is equally critical: upskill IT and bioinformatics personnel in data engineering, security best practices, and provenance tracking to support reproducible research. Finally, incorporate regular tabletop exercises and audits to validate recovery procedures, cross-border transfer compliance, and incident response for data breaches. By sequencing these actions over short, medium, and long horizons, leaders can build resilient storage ecosystems that support scientific throughput and regulatory compliance.
A transparent, practitioner-informed research methodology leveraging interviews, technical mapping, and cross-validated documentation to derive actionable insights for storage decision-makers
The research methodology underpinning this report combines qualitative expert interviews, technology landscape mapping, and synthesis of publicly available technical documentation to ensure robust and actionable outcomes. Primary qualitative inputs were solicited from IT architects, bioinformatics leads, laboratory directors, and procurement managers to capture real-world constraints, integration pain points, and governance priorities. Secondary sources included vendor technical specifications, white papers, standards documentation, and regulatory guidance to validate capability claims and compliance requirements. Cross-validation techniques were applied by triangulating practitioner input with vendor roadmaps and standards to identify consistent patterns and outliers.
Analytical rigor was maintained by segmenting findings across storage type, deployment mode, end-user profile, sequencing platform, and data type to surface differentiated strategies and actionable insights. Emphasis was placed on reproducibility of the research process: methodologies for interview selection, data coding, and thematic synthesis were documented, and limitations were acknowledged, particularly where proprietary implementations or rapidly evolving vendor features constrained disclosure. The intent of the methodology is to provide both contextual depth and pragmatic guidance for decision-makers evaluating storage architectures and vendor relationships.
Concluding perspectives on turning sequencing data storage from a cost center into a strategic enabler of reproducible science, clinical readiness, and long-term data stewardship
In conclusion, sequencing data storage is no longer a passive IT commodity but a strategic capability that influences research velocity, clinical decision-making, and regulatory compliance. The combined pressures of rising data volumes, evolving sequencing modalities, and shifting policy conditions require organizations to adopt adaptive architectures, strong governance, and vendor strategies that mitigate supply chain and tariff exposure. By understanding the nuanced needs articulated across storage types, deployment modes, end-user profiles, sequencing platforms, and data classes, leaders can prioritize investments in software-driven efficiency, hybrid deployment flexibility, and professional services that accelerate operational maturity.
Moving forward, institutions that embed lifecycle policies, invest in metadata-driven retrieval systems, and cultivate robust vendor partnerships will be best positioned to turn data stewardship into a competitive advantage. The path to resilience is iterative and requires sustained alignment between scientific objectives, IT capabilities, and organizational governance to ensure that storage becomes an enabler rather than an impediment to discovery and clinical impact.
Note: PDF & Excel + Online Access - 1 Year
Framing the challenges and strategic priorities for next-generation sequencing data storage to enable secure, efficient, and reproducible research and clinical workflows
Next-generation sequencing has transformed biological research and clinical practice, creating unprecedented volumes of raw and derived data that demand a reexamination of storage strategy, operational workflows, and governance frameworks. As sequencing throughput rises and analytic sophistication increases, organizations face a confluence of technical, regulatory, and cost pressures that require a structured response. This introduction frames the central operational challenges-data lifecycle management, reproducibility, security, and long-term preservation-and situates them within broader institutional priorities such as accelerating discovery, enabling precision medicine, and safeguarding patient privacy.
The discussion begins by acknowledging the heterogeneity of storage needs across raw sequence outputs, intermediate processed files, and long-term archives. It then describes how storage type choices interact with deployment models and downstream analytics, shaping total cost of ownership and time-to-insight. The narrative closes by highlighting the necessity for cross-functional governance: IT architects, bioinformaticians, compliance officers, and procurement teams must align on policies for encryption, access control, and data retention to convert storage from a passive repository into an active enabler of scientific and clinical value.
How technological convergence, evolving service models, and hybrid deployment architectures are rapidly redefining sequencing data storage strategies across research and clinical environments
The landscape for sequencing data storage is being reshaped by a set of transformative shifts that affect technological choices, supplier models, and institutional practices. First, hardware advances are driving denser, more energy-efficient storage media that reduce physical footprint and improve reliability, while parallel innovations in data compression and content-addressable storage are changing how repositories organize and present genomic assets. At the same time, services such as systems integration, consulting, and ongoing support and maintenance are becoming integral to deployments, as specialized expertise is required to tune performance and ensure compliance in regulated environments.
Concurrently, software stacks for data management and security are maturing, introducing capabilities for metadata-driven retrieval, policy-based tiering, and automated lifecycle workflows that reduce manual overhead. Deployment modes are shifting toward hybrid configurations that combine on-premises control for sensitive workloads with cloud scalability for burst compute and collaboration. This hybrid orientation is reinforced by platform-agnostic orchestration layers that enable consistent policies regardless of underlying infrastructure. End users-ranging from academic and government research labs to clinical hospitals and biotech companies of varying sizes-are demanding tailored solutions that reflect their distinct regulatory obligations, collaboration patterns, and budgetary constraints. Lastly, the sequencing technology split between long-read systems and high-throughput short-read platforms continues to influence file formats, throughput management, and storage access patterns, requiring adaptable architectures that can simultaneously serve archival and low-latency analytic needs.
Assessing how shifts in U.S. tariff policy in 2025 are prompting procurement, architecture, and vendor strategy changes that materially affect sequencing data storage operations
Policy and tariff dynamics in 2025 have introduced new operational considerations for organizations that procure storage hardware, integrate systems, or contract cloud services through international supply chains. Changes to U.S. tariff schedules for hardware components and finished storage arrays have altered procurement timing and sourcing strategies, prompting procurement teams to re-evaluate supplier diversification, inventory lead times, and total landed cost even as they avoid short-term disruption to active research programs. The cumulative impact has been a renewed focus on contractual flexibility and forward-looking vendor agreements that incorporate price adjustment clauses and alternate supply pathways.
These tariff pressures also incentivize greater adoption of software-centric approaches that decouple value from hardware economics. When hardware tariffs increase capital expense or extend delivery windows, organizations often accelerate investments in data compression, deduplication, and tiering software to minimize immediate capacity needs. In parallel, cloud-based services and managed offerings become more attractive because they shift exposure to capital-market fluctuations and tariffs onto the service provider. However, reliance on external providers increases the importance of due diligence related to data sovereignty, cross-border transfer rules, and vendor continuity plans.
In practice, research institutions and clinical laboratories have responded by broadening their vendor bases, negotiating extended warranties and maintenance support, and staging refresh cycles to smooth out procurement spikes. Transitional strategies frequently combine retaining critical on-premises capacity for sensitive datasets while leveraging external compute and temporary storage in jurisdictions with stable trade relationships. These hybrid approaches balance resilience, regulatory compliance, and cost efficiency in the face of tariff-driven uncertainty.
In-depth segmentation insights revealing how storage type, deployment mode, end-user profiles, sequencing platforms, and data types collectively determine architecture and policy choices
A nuanced segmentation-based view reveals how storage priorities diverge by functional role, deployment expectation, and data fidelity requirements. When examined through the prism of storage type, hardware solutions remain essential for high-throughput, low-latency workloads while services-spanning consulting, integration, and support and maintenance-play a decisive role in successful implementations by bridging bioinformatics needs and IT operations; software categories such as data compression, data management, and data security increasingly determine operational efficiency and regulatory readiness. Deployment mode considerations further differentiate strategies: cloud deployments, whether public or private, offer elasticity for bursty analytics; hybrid deployments provide a pragmatic middle ground, enabling localized control for sensitive data while leveraging external resources; and on-premises deployments continue to be favored where latency, sovereignty, or institutional policy dictate.
End-user segmentation underscores how use cases and organizational scale influence architectural choices. Academic and research institutes, including government research labs and universities, often prioritize collaboration, reproducibility, and grant budget constraints, leading to tiered architectures and shared infrastructure models. Healthcare providers like hospitals and clinics focus on patient privacy, integration with clinical systems, and seamless regulatory audits, which demand robust encryption, access logging, and validated workflows. Pharmaceutical and biotechnology companies span a spectrum from biotech SMEs that need flexible, cost-efficient solutions to large pharma organizations that emphasize validated, enterprise-grade systems and consolidated governance. Sequencing platform distinctions further shape storage requirements: long-read technologies from providers focused on continuous streaming and large file sizes require architectures optimized for sustained ingest and variable file sizes, whereas short-read platforms generate high-volume, smaller files with predictable batch patterns that benefit from parallelized ingest and indexable metadata. Finally, data type considerations-spanning archived cold storage and tape, processed artifacts such as BAM and VCF, and raw BCL and FASTQ outputs-dictate lifecycle policies, tiering strategies, and retrieval SLAs. Taken together, these segmentation lenses guide solution selection, highlight integration complexity, and prioritize areas for automation and policy enforcement.
Critical regional considerations for sequencing data storage that shape procurement practices, regulatory compliance strategies, and collaborative research models across global markets
Regional dynamics exert a measurable influence on procurement behavior, regulatory priorities, and collaboration patterns. In the Americas, a concentration of large academic centers, clinical networks, and biotech clusters drives demand for integrated solutions that support translational research and clinical trials; institutions in this region emphasize acceleration of time-to-result, integration with electronic health systems, and adherence to stringent privacy regimes. Europe, the Middle East and Africa present a more heterogeneous regulatory landscape where cross-border collaborations and data sovereignty concerns require carefully designed governance controls, localized encryption practices, and awareness of divergent retention mandates; public sector research labs and national genomics initiatives often lead adoption patterns and set interoperability expectations. Asia-Pacific spurs innovation through rapid sequencing adoption and significant investments in genomic medicine, but organizations encounter diverse infrastructure maturity levels, differing regulatory approaches to patient data, and logistical challenges that favor modular, scalable architectures and partnerships with regional service providers.
Transitioning across these regions, there is a common trajectory: rising data volumes and multi-institutional collaborations compel organizations to harmonize metadata standards, adopt interoperable transfer protocols, and invest in staff skills for data stewardship. Consequently, regional strategies blend local control with global collaboration capabilities to enable reproducible science while meeting regulatory and operational constraints.
How hardware manufacturers, software innovators, and managed service providers are constructing an integrated ecosystem to meet the specialized demands of sequencing data storage and governance
The competitive landscape in sequencing data storage is characterized by a mix of hardware vendors, software innovators, and managed service providers that together create an ecosystem of interoperable components. Hardware manufacturers are differentiating through performance, energy efficiency, and service networks that support scientific workloads, while software providers compete on metadata management, automated tiering, and robust encryption designed for regulated environments. Managed service providers and systems integrators are increasingly important, offering end-to-end project delivery that spans initial architecture, data migration, validation, and long-term support. Partnerships between storage vendors and domain-specific analytics companies are accelerating the development of turnkey offerings for life sciences customers, reducing integration friction and shortening time to operational maturity.
Institutional buyers evaluate partners on technical depth, compliance track record, and flexibility to accommodate heterogeneous sequencing platforms and file formats. Key selection criteria include the ability to ingest diverse data types efficiently, maintain chain-of-custody for clinical datasets, and provide transparent performance telemetry for capacity and access. Vendors that invest in professional services, certification programs, and community-driven integrations are better positioned to capture long-term relationships with research consortia, hospital systems, and pharmaceutical R&D groups. Over time, competitive differentiation will hinge on the capacity to offer seamless hybrid deployments, strong lifecycle automation, and predictable support for evolving regulatory requirements.
Actionable, prioritized recommendations for building resilient, compliant, and cost-effective sequencing data storage strategies that align with scientific and clinical goals
Industry leaders can take several practical steps to ensure storage strategy aligns with scientific objectives, regulatory obligations, and operational realities. First, organizations should codify data lifecycle policies that distinctly classify raw, processed, and archived data and map each classification to explicit retention, encryption, and access controls. Second, adopt a hybrid-first infrastructure strategy that maintains on-premises control for sensitive or latency-critical datasets while leveraging cloud elasticity for batch analytics and collaboration; this approach reduces exposure to supply chain shocks and tariffs while enabling scalable compute. Third, prioritize investments in data management software-specifically in compression, deduplication, and searchable metadata layers-to reduce storage footprint and accelerate retrieval without compromising data fidelity.
Additionally, organizations should strengthen vendor governance through multi-supplier procurement, well-defined service-level objectives, and contractual clauses that address price variability and continuity of service. Workforce development is equally critical: upskill IT and bioinformatics personnel in data engineering, security best practices, and provenance tracking to support reproducible research. Finally, incorporate regular tabletop exercises and audits to validate recovery procedures, cross-border transfer compliance, and incident response for data breaches. By sequencing these actions over short, medium, and long horizons, leaders can build resilient storage ecosystems that support scientific throughput and regulatory compliance.
A transparent, practitioner-informed research methodology leveraging interviews, technical mapping, and cross-validated documentation to derive actionable insights for storage decision-makers
The research methodology underpinning this report combines qualitative expert interviews, technology landscape mapping, and synthesis of publicly available technical documentation to ensure robust and actionable outcomes. Primary qualitative inputs were solicited from IT architects, bioinformatics leads, laboratory directors, and procurement managers to capture real-world constraints, integration pain points, and governance priorities. Secondary sources included vendor technical specifications, white papers, standards documentation, and regulatory guidance to validate capability claims and compliance requirements. Cross-validation techniques were applied by triangulating practitioner input with vendor roadmaps and standards to identify consistent patterns and outliers.
Analytical rigor was maintained by segmenting findings across storage type, deployment mode, end-user profile, sequencing platform, and data type to surface differentiated strategies and actionable insights. Emphasis was placed on reproducibility of the research process: methodologies for interview selection, data coding, and thematic synthesis were documented, and limitations were acknowledged, particularly where proprietary implementations or rapidly evolving vendor features constrained disclosure. The intent of the methodology is to provide both contextual depth and pragmatic guidance for decision-makers evaluating storage architectures and vendor relationships.
Concluding perspectives on turning sequencing data storage from a cost center into a strategic enabler of reproducible science, clinical readiness, and long-term data stewardship
In conclusion, sequencing data storage is no longer a passive IT commodity but a strategic capability that influences research velocity, clinical decision-making, and regulatory compliance. The combined pressures of rising data volumes, evolving sequencing modalities, and shifting policy conditions require organizations to adopt adaptive architectures, strong governance, and vendor strategies that mitigate supply chain and tariff exposure. By understanding the nuanced needs articulated across storage types, deployment modes, end-user profiles, sequencing platforms, and data classes, leaders can prioritize investments in software-driven efficiency, hybrid deployment flexibility, and professional services that accelerate operational maturity.
Moving forward, institutions that embed lifecycle policies, invest in metadata-driven retrieval systems, and cultivate robust vendor partnerships will be best positioned to turn data stewardship into a competitive advantage. The path to resilience is iterative and requires sustained alignment between scientific objectives, IT capabilities, and organizational governance to ensure that storage becomes an enabler rather than an impediment to discovery and clinical impact.
Note: PDF & Excel + Online Access - 1 Year
Table of Contents
182 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Implementation of scalable cloud-based architectures integrating AI-driven compression and indexing for NGS data storage
- 5.2. Adoption of hybrid on-premise and multi-cloud solutions to optimize NGS data security, compliance, and cost efficiency
- 5.3. Development of advanced encryption and blockchain-based audit trails for ensuring NGS data integrity and regulatory compliance
- 5.4. Emergence of edge computing infrastructures to enable real-time processing and temporary storage of NGS sequencing outputs
- 5.5. Utilization of automated tiered storage management with intelligent data lifecycle policies for NGS archives
- 5.6. Integration of interoperable data-sharing frameworks and standardized metadata schemas to facilitate NGS collaboration
- 5.7. Investment in high-density object storage hardware optimized for energy efficiency in large-scale NGS datasets
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. NGS Data Storage Market, by Storage Type
- 8.1. Hardware
- 8.2. Services
- 8.2.1. Consulting
- 8.2.2. Integration
- 8.2.3. Support And Maintenance
- 8.3. Software
- 8.3.1. Data Compression Software
- 8.3.2. Data Management Software
- 8.3.3. Data Security Software
- 9. NGS Data Storage Market, by Sequencing Platform
- 9.1. Long Read Sequencing
- 9.1.1. Oxford Nanopore
- 9.1.2. PacBio
- 9.2. Short Read Sequencing
- 9.2.1. Illumina
- 9.2.2. MGI
- 10. NGS Data Storage Market, by Data Type
- 10.1. Archived Data
- 10.1.1. Cold Storage
- 10.1.2. Tape
- 10.2. Processed Data
- 10.3. Raw Data
- 11. NGS Data Storage Market, by Deployment Mode
- 11.1. Cloud
- 11.1.1. Private Cloud
- 11.1.2. Public Cloud
- 11.2. Hybrid
- 11.3. On Premises
- 12. NGS Data Storage Market, by End User
- 12.1. Academic And Research Institutes
- 12.1.1. Government Research Labs
- 12.1.2. Universities
- 12.2. Healthcare Providers
- 12.2.1. Clinics
- 12.2.2. Hospitals
- 12.3. Pharmaceutical And Biotechnology Companies
- 12.3.1. Biotech SMEs
- 12.3.2. Large Pharma
- 13. NGS Data Storage Market, by Region
- 13.1. Americas
- 13.1.1. North America
- 13.1.2. Latin America
- 13.2. Europe, Middle East & Africa
- 13.2.1. Europe
- 13.2.2. Middle East
- 13.2.3. Africa
- 13.3. Asia-Pacific
- 14. NGS Data Storage Market, by Group
- 14.1. ASEAN
- 14.2. GCC
- 14.3. European Union
- 14.4. BRICS
- 14.5. G7
- 14.6. NATO
- 15. NGS Data Storage Market, by Country
- 15.1. United States
- 15.2. Canada
- 15.3. Mexico
- 15.4. Brazil
- 15.5. United Kingdom
- 15.6. Germany
- 15.7. France
- 15.8. Russia
- 15.9. Italy
- 15.10. Spain
- 15.11. China
- 15.12. India
- 15.13. Japan
- 15.14. Australia
- 15.15. South Korea
- 16. Competitive Landscape
- 16.1. Market Share Analysis, 2024
- 16.2. FPNV Positioning Matrix, 2024
- 16.3. Competitive Analysis
- 16.3.1. Agilent Technologies, Inc.
- 16.3.2. Alphabet Inc.
- 16.3.3. Amazon Web Services, Inc.
- 16.3.4. BGI Group
- 16.3.5. BioSistemika
- 16.3.6. Dell Technologies Inc.
- 16.3.7. DNAnexus, Inc.
- 16.3.8. DNASTAR, Inc.
- 16.3.9. F. Hoffmann-La Roche Ltd.
- 16.3.10. Fabric Genomic, Inc.
- 16.3.11. Illumina, Inc.
- 16.3.12. International Business Machines Corporation
- 16.3.13. Microsoft Corporation
- 16.3.14. NetApp, Inc.
- 16.3.15. Oracle Corporation
- 16.3.16. Pacific Biosciences of California, Inc.
- 16.3.17. PerkinElmer Inc.
- 16.3.18. Pure Storage, Inc.
- 16.3.19. QIAGEN N.V.
- 16.3.20. Quantum Corporation
- 16.3.21. Qumulo, Inc.
- 16.3.22. Thermo Fisher Scientific Inc.
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.


