IIoT Data Collection & Device Management Platform Market by Component (Hardware, Services, Software Platform), Connectivity (Cellular, Ethernet, Lpw An), Deployment Mode, Application, Industry Vertical - Global Forecast 2025-2032
Description
The IIoT Data Collection & Device Management Platform Market was valued at USD 4.16 billion in 2024 and is projected to grow to USD 5.35 billion in 2025, with a CAGR of 28.83%, reaching USD 31.63 billion by 2032.
A concise orientation to how advances in sensors, edge processing, and unified management are reshaping operational data strategies for industrial enterprises
The industrial internet of things (IIoT) is redefining how organizations capture operational data and manage distributed device fleets, creating new imperatives for interoperability, security, and lifecycle management. Recent advancements in sensor miniaturization, edge compute, and low-power wide-area connectivity have expanded the scope of data collection beyond traditional supervisory systems, enabling continuous, high-fidelity streams of operational intelligence. As operations become more instrumented, data collection and device management platforms must scale to support heterogeneous protocols, varying latency requirements, and diverse deployment environments without imposing untenable operational overhead.
Transitioning from point solutions to unified platforms reduces integration complexity and supports more consistent device provisioning, firmware updates, and security posture management across dispersed assets. In parallel, stakeholders increasingly demand pragmatic frameworks that bridge operational technology (OT) and information technology (IT) concerns, balancing real-time control with enterprise analytics. This report synthesizes those dynamics into actionable perspectives for executives and technical leaders who are prioritizing resilient IIoT architectures. The following sections outline transformative shifts, tariff impacts, segmentation intelligence, regional characteristics, competitive tendencies, recommended actions, and the research approach used to generate these conclusions.
How converging demands for edge processing, device-centric security, interoperability, and outcome-based KPIs are rapidly redefining IIoT platform expectations
The landscape for IIoT data collection and device management is undergoing transformative shifts driven by converging technological, regulatory, and operational forces. First, edge-native architectures have become a principal design consideration; organizations are moving processing closer to data sources to reduce latency, preserve bandwidth, and enable autonomous decision-making in environments where connectivity is intermittent. Second, security frameworks have evolved from perimeter-centric models to device-centric approaches that prioritize identity, attestations, and secure boot to mitigate increasing firmware-level threats. These security priorities influence procurement and design decisions, often dictating platform compatibility and lifecycle support.
Third, interoperability initiatives and industry-specific standards are accelerating platform adoption by reducing integration timelines and enabling domain-specific analytics. Fourth, business expectations are shifting from cost containment to outcome-based KPIs such as uptime, predictive maintenance effectiveness, and asset lifecycle extension. Consequently, vendors are packaging data ingestion, normalization, and device management capabilities into modular offerings that can be tailored to sector-specific workflows. Finally, sustainability and resilience considerations are influencing architecture choices, with organizations seeking platforms that support energy-efficient connectivity options and provide transparent device health reporting to maximize asset longevity. Together, these trends are converging to produce a new generation of IIoT platforms that emphasize secure, scalable, and outcome-driven implementations.
Navigating recent tariff shifts and supply chain complexities that are reshaping procurement strategies, supplier diversification, and platform-agnostic deployment plans
Recent tariff developments in the United States have introduced additional variables into procurement and supply chain planning for hardware-dependent IIoT deployments. Tariff adjustments on electronic components, communications modules, and finished devices have prompted procurement teams to reevaluate sourcing strategies and supplier relationships. In response, organizations are diversifying supplier portfolios to include regional manufacturers and qualified contract manufacturers with established compliance processes that mitigate tariff exposure. This diversification is often accompanied by longer qualification cycles and heightened emphasis on supplier transparency for country-of-origin documentation.
Moreover, procurement strategies are increasingly considering total cost-of-ownership drivers beyond upfront hardware costs, such as logistics lead times, customs clearance complexity, and potential rework necessitated by compliance variances. For organizations that operate global networks of devices, these tariff dynamics have reinforced the value of vendor-agnostic management platforms that enable heterogeneous device onboarding regardless of supplier or module origin. In the near term, legal and procurement teams are coordinating more closely with engineering and operations to design specifications that maintain functional requirements while offering flexibility to shift component sources as needed. These adaptive sourcing practices, coupled with enhanced contractual protections and flexible platform architectures, help organizations preserve deployment timelines and operational performance despite tariff-related disruptions.
Segmentation-driven perspectives that map industry-specific operational needs, application requirements, deployment choices, component roles, and connectivity trade-offs
A nuanced understanding of market segmentation is essential for aligning platform capabilities to operational requirements and achieving the desired returns on IIoT investments. Based on industry vertical, the market is studied across Energy And Utilities, Healthcare, Manufacturing, and Transportation And Logistics, with Energy And Utilities further studied across Electricity And Power, Oil And Gas, and Water And Wastewater, Manufacturing further studied across Discrete Manufacturing and Process Manufacturing, and Transportation And Logistics further studied across Air, Maritime, Rail, and Road. These industry distinctions matter because each vertical imposes unique reliability thresholds, regulatory constraints, and operational cadence that influence device lifecycle management and data retention policies.
Based on application, the market is studied across Asset Tracking, Predictive Maintenance, Quality Control, and Remote Monitoring, and this application-driven perspective clarifies the data fidelity, update cadence, and edge processing requirements necessary to realize specific operational outcomes. Based on deployment mode, the market is studied across Cloud and On Premises, which establishes the architectural trade-offs between centralized analytics and localized control, and shapes decisions about latency tolerance, data sovereignty, and integration complexity. Based on component, the market is studied across Hardware, Services, and Software Platform, highlighting the importance of cohesive provider ecosystems that offer device certification, managed services, and extensible platform features. Finally, based on connectivity, the market is studied across Cellular, Ethernet, Lpw An, and Wi Fi, reflecting the diverse connectivity profiles that dictate power budgets, coverage strategies, and data transport economics. By synthesizing these segmentation dimensions, leaders can prioritize capability roadmaps and define procurement criteria that map directly to their operational objectives.
How regional regulatory diversity, infrastructure maturity, and industrial priorities are shaping IIoT deployment models, vendor selection, and governance approaches
Regional dynamics continue to exert a strong influence on IIoT deployment strategies and vendor engagement models. In the Americas, investments in modernization and digital transformation are concentrated in sectors such as energy, manufacturing, and logistics, and there is significant momentum around utility grid digitization and advanced manufacturing automation projects. Regulatory emphasis on critical infrastructure protection has driven demand for robust device security features and compliance reporting capabilities, prompting many organizations to prioritize platforms with strong auditability and secure provisioning workflows.
In Europe, Middle East & Africa, regulatory diversity and varying infrastructure maturity levels produce a spectrum of deployment models from highly centralized cloud solutions in mature markets to hybrid and edge-focused architectures in regions with connectivity constraints. The EMEA region also places a high premium on interoperability standards and sustainability reporting, which influences vendor evaluations and procurement frameworks. In Asia-Pacific, rapid industrialization and widespread adoption of smart manufacturing practices have catalyzed large-scale rollouts of sensing and control systems, with particular emphasis on low-latency edge processing for real-time control and predictive maintenance. Across regions, cross-border data flows, local sourcing requirements, and regional certification regimes necessitate flexible platform designs that accommodate diverse regulatory and operational boundaries. Consequently, global adopters often standardize on modular platforms that can be locally configured to satisfy regional constraints while preserving centralized visibility and governance.
Competitive archetypes and vendor strategies that emphasize vertical specialization, platform extensibility, and managed lifecycle services to meet diverse enterprise needs
Competitive dynamics among solution providers reveal distinct approaches to capturing value across the IIoT stack, with different players emphasizing hardware innovation, platform extensibility, or managed services. Some vendors differentiate through vertically tailored solutions that embed domain knowledge and prebuilt analytics for utilities, healthcare, or discrete manufacturing operations, enabling faster time-to-value for specific use cases. Other providers focus on creating highly extensible software platforms that prioritize broad protocol support, developer tooling, and ecosystem integrations, thereby attracting partners and systems integrators who deliver customized implementations.
Service-oriented providers are carving out positions by offering managed device lifecycle services, including remote provisioning, firmware orchestration, and field maintenance coordination, which reduce the operational burden for enterprises lacking large IoT operations teams. Strategic partnerships and certification programs are increasingly important, as they provide procurement teams reassurance about interoperability and long-term support. Additionally, companies that invest in comprehensive security portfolios and transparent supply chain practices tend to perform better in competitive procurement processes where risk mitigation and compliance are prioritized. For buyers, the choice among these provider archetypes should align with internal capabilities, desired speed of deployment, and long-term operational ambitions, with an eye toward vendors that demonstrate clear roadmaps for standards adoption and lifecycle support.
Practical, high-impact actions for leaders to ensure interoperability, device-centric security, resilient sourcing, and cross-functional governance during IIoT rollouts
Industry leaders should adopt a set of actionable practices to translate strategic intent into operational outcomes for IIoT rollouts. First, establish an interoperability-first procurement standard that requires device certification pathways, open protocol support, and documented integration patterns to avoid vendor lock-in and accelerate system convergence. Second, embed device-centric security requirements into every stage of the procurement and deployment lifecycle, including mandatory secure boot, signed firmware, and identity-based access controls that persist throughout the asset lifecycle. Third, prioritize modular platform architectures that separate data ingestion, edge processing, and analytics tiers to allow incremental modernization while maintaining core operational continuity.
Fourth, align sourcing strategies with supply chain resilience goals by qualifying multiple suppliers and by incorporating contractual terms that address tariff exposure, lead-time variability, and component substitution. Fifth, invest in internal capability building by creating a cross-functional IIoT governance body that includes OT, IT, procurement, and cybersecurity representation to accelerate decision making and ensure enduring operational ownership. Finally, design pilot programs that validate not just technological feasibility but also operational workflows, maintenance processes, and change management approaches. By following these steps, organizations can reduce implementation risk, improve vendor negotiations, and speed integration of device-generated insights into established operational processes.
A transparent, practitioner-focused research approach combining interviews, technical assessments, and literature synthesis to inform practical IIoT recommendations
The findings and recommendations in this report are derived from a structured research methodology that combined qualitative interviews, technical assessments, and secondary literature synthesis to ensure a comprehensive perspective on IIoT data collection and device management. Primary inputs included conversations with practitioners across operations, engineering, procurement, and cybersecurity functions to capture real-world constraints, deployment experiences, and priority outcomes. These interviews were complemented by technical assessments of platform architectures, connectivity options, and device lifecycle processes to ground strategic recommendations in operational realities.
Secondary research encompassed vendor documentation, standards bodies publications, and publicly available case studies to triangulate best practices and identify recurring implementation patterns. Throughout the research process, emphasis was placed on identifying practical trade-offs and decision points rather than on high-level projections, ensuring that guidance remains applicable across differing organizational maturities. Where applicable, analytic frameworks were stress-tested against representative use cases to validate that recommendations map to measurable operational improvements. The methodology prioritizes transparency, reproducibility, and practitioner relevance, and it informs both the diagnostic and prescriptive elements of the report.
Summative insights emphasizing modular architectures, rigorous security, and resilient sourcing to convert IIoT potential into tangible operational benefits
In conclusion, the evolution of data collection and device management platforms is enabling a new class of industrial capabilities that fuse real-time operational control with enterprise-grade analytics and security. The combination of edge-native processing, device-centric security, and flexible connectivity options provides organizations with the tools to improve asset reliability, reduce unplanned downtime, and support regulatory compliance. Nevertheless, realizing these benefits requires deliberate architectural choices, resilient sourcing strategies, and cross-functional governance that align technical capabilities with operational objectives.
As organizations plan their IIoT roadmaps, they should emphasize modular platforms that enable phased adoption, insist on rigorous security and interoperability requirements to limit operational risk, and cultivate supplier relationships that can adapt to shifting trade and tariff dynamics. Taken together, these approaches position industrial enterprises to harness device-level data as a reliable source of operational advantage while maintaining the agility needed to respond to market and regulatory changes. The recommendations and insights in this report are intended to serve as an actionable guide for leaders seeking to translate IIoT potential into measurable and sustainable operational improvements.
Note: PDF & Excel + Online Access - 1 Year
A concise orientation to how advances in sensors, edge processing, and unified management are reshaping operational data strategies for industrial enterprises
The industrial internet of things (IIoT) is redefining how organizations capture operational data and manage distributed device fleets, creating new imperatives for interoperability, security, and lifecycle management. Recent advancements in sensor miniaturization, edge compute, and low-power wide-area connectivity have expanded the scope of data collection beyond traditional supervisory systems, enabling continuous, high-fidelity streams of operational intelligence. As operations become more instrumented, data collection and device management platforms must scale to support heterogeneous protocols, varying latency requirements, and diverse deployment environments without imposing untenable operational overhead.
Transitioning from point solutions to unified platforms reduces integration complexity and supports more consistent device provisioning, firmware updates, and security posture management across dispersed assets. In parallel, stakeholders increasingly demand pragmatic frameworks that bridge operational technology (OT) and information technology (IT) concerns, balancing real-time control with enterprise analytics. This report synthesizes those dynamics into actionable perspectives for executives and technical leaders who are prioritizing resilient IIoT architectures. The following sections outline transformative shifts, tariff impacts, segmentation intelligence, regional characteristics, competitive tendencies, recommended actions, and the research approach used to generate these conclusions.
How converging demands for edge processing, device-centric security, interoperability, and outcome-based KPIs are rapidly redefining IIoT platform expectations
The landscape for IIoT data collection and device management is undergoing transformative shifts driven by converging technological, regulatory, and operational forces. First, edge-native architectures have become a principal design consideration; organizations are moving processing closer to data sources to reduce latency, preserve bandwidth, and enable autonomous decision-making in environments where connectivity is intermittent. Second, security frameworks have evolved from perimeter-centric models to device-centric approaches that prioritize identity, attestations, and secure boot to mitigate increasing firmware-level threats. These security priorities influence procurement and design decisions, often dictating platform compatibility and lifecycle support.
Third, interoperability initiatives and industry-specific standards are accelerating platform adoption by reducing integration timelines and enabling domain-specific analytics. Fourth, business expectations are shifting from cost containment to outcome-based KPIs such as uptime, predictive maintenance effectiveness, and asset lifecycle extension. Consequently, vendors are packaging data ingestion, normalization, and device management capabilities into modular offerings that can be tailored to sector-specific workflows. Finally, sustainability and resilience considerations are influencing architecture choices, with organizations seeking platforms that support energy-efficient connectivity options and provide transparent device health reporting to maximize asset longevity. Together, these trends are converging to produce a new generation of IIoT platforms that emphasize secure, scalable, and outcome-driven implementations.
Navigating recent tariff shifts and supply chain complexities that are reshaping procurement strategies, supplier diversification, and platform-agnostic deployment plans
Recent tariff developments in the United States have introduced additional variables into procurement and supply chain planning for hardware-dependent IIoT deployments. Tariff adjustments on electronic components, communications modules, and finished devices have prompted procurement teams to reevaluate sourcing strategies and supplier relationships. In response, organizations are diversifying supplier portfolios to include regional manufacturers and qualified contract manufacturers with established compliance processes that mitigate tariff exposure. This diversification is often accompanied by longer qualification cycles and heightened emphasis on supplier transparency for country-of-origin documentation.
Moreover, procurement strategies are increasingly considering total cost-of-ownership drivers beyond upfront hardware costs, such as logistics lead times, customs clearance complexity, and potential rework necessitated by compliance variances. For organizations that operate global networks of devices, these tariff dynamics have reinforced the value of vendor-agnostic management platforms that enable heterogeneous device onboarding regardless of supplier or module origin. In the near term, legal and procurement teams are coordinating more closely with engineering and operations to design specifications that maintain functional requirements while offering flexibility to shift component sources as needed. These adaptive sourcing practices, coupled with enhanced contractual protections and flexible platform architectures, help organizations preserve deployment timelines and operational performance despite tariff-related disruptions.
Segmentation-driven perspectives that map industry-specific operational needs, application requirements, deployment choices, component roles, and connectivity trade-offs
A nuanced understanding of market segmentation is essential for aligning platform capabilities to operational requirements and achieving the desired returns on IIoT investments. Based on industry vertical, the market is studied across Energy And Utilities, Healthcare, Manufacturing, and Transportation And Logistics, with Energy And Utilities further studied across Electricity And Power, Oil And Gas, and Water And Wastewater, Manufacturing further studied across Discrete Manufacturing and Process Manufacturing, and Transportation And Logistics further studied across Air, Maritime, Rail, and Road. These industry distinctions matter because each vertical imposes unique reliability thresholds, regulatory constraints, and operational cadence that influence device lifecycle management and data retention policies.
Based on application, the market is studied across Asset Tracking, Predictive Maintenance, Quality Control, and Remote Monitoring, and this application-driven perspective clarifies the data fidelity, update cadence, and edge processing requirements necessary to realize specific operational outcomes. Based on deployment mode, the market is studied across Cloud and On Premises, which establishes the architectural trade-offs between centralized analytics and localized control, and shapes decisions about latency tolerance, data sovereignty, and integration complexity. Based on component, the market is studied across Hardware, Services, and Software Platform, highlighting the importance of cohesive provider ecosystems that offer device certification, managed services, and extensible platform features. Finally, based on connectivity, the market is studied across Cellular, Ethernet, Lpw An, and Wi Fi, reflecting the diverse connectivity profiles that dictate power budgets, coverage strategies, and data transport economics. By synthesizing these segmentation dimensions, leaders can prioritize capability roadmaps and define procurement criteria that map directly to their operational objectives.
How regional regulatory diversity, infrastructure maturity, and industrial priorities are shaping IIoT deployment models, vendor selection, and governance approaches
Regional dynamics continue to exert a strong influence on IIoT deployment strategies and vendor engagement models. In the Americas, investments in modernization and digital transformation are concentrated in sectors such as energy, manufacturing, and logistics, and there is significant momentum around utility grid digitization and advanced manufacturing automation projects. Regulatory emphasis on critical infrastructure protection has driven demand for robust device security features and compliance reporting capabilities, prompting many organizations to prioritize platforms with strong auditability and secure provisioning workflows.
In Europe, Middle East & Africa, regulatory diversity and varying infrastructure maturity levels produce a spectrum of deployment models from highly centralized cloud solutions in mature markets to hybrid and edge-focused architectures in regions with connectivity constraints. The EMEA region also places a high premium on interoperability standards and sustainability reporting, which influences vendor evaluations and procurement frameworks. In Asia-Pacific, rapid industrialization and widespread adoption of smart manufacturing practices have catalyzed large-scale rollouts of sensing and control systems, with particular emphasis on low-latency edge processing for real-time control and predictive maintenance. Across regions, cross-border data flows, local sourcing requirements, and regional certification regimes necessitate flexible platform designs that accommodate diverse regulatory and operational boundaries. Consequently, global adopters often standardize on modular platforms that can be locally configured to satisfy regional constraints while preserving centralized visibility and governance.
Competitive archetypes and vendor strategies that emphasize vertical specialization, platform extensibility, and managed lifecycle services to meet diverse enterprise needs
Competitive dynamics among solution providers reveal distinct approaches to capturing value across the IIoT stack, with different players emphasizing hardware innovation, platform extensibility, or managed services. Some vendors differentiate through vertically tailored solutions that embed domain knowledge and prebuilt analytics for utilities, healthcare, or discrete manufacturing operations, enabling faster time-to-value for specific use cases. Other providers focus on creating highly extensible software platforms that prioritize broad protocol support, developer tooling, and ecosystem integrations, thereby attracting partners and systems integrators who deliver customized implementations.
Service-oriented providers are carving out positions by offering managed device lifecycle services, including remote provisioning, firmware orchestration, and field maintenance coordination, which reduce the operational burden for enterprises lacking large IoT operations teams. Strategic partnerships and certification programs are increasingly important, as they provide procurement teams reassurance about interoperability and long-term support. Additionally, companies that invest in comprehensive security portfolios and transparent supply chain practices tend to perform better in competitive procurement processes where risk mitigation and compliance are prioritized. For buyers, the choice among these provider archetypes should align with internal capabilities, desired speed of deployment, and long-term operational ambitions, with an eye toward vendors that demonstrate clear roadmaps for standards adoption and lifecycle support.
Practical, high-impact actions for leaders to ensure interoperability, device-centric security, resilient sourcing, and cross-functional governance during IIoT rollouts
Industry leaders should adopt a set of actionable practices to translate strategic intent into operational outcomes for IIoT rollouts. First, establish an interoperability-first procurement standard that requires device certification pathways, open protocol support, and documented integration patterns to avoid vendor lock-in and accelerate system convergence. Second, embed device-centric security requirements into every stage of the procurement and deployment lifecycle, including mandatory secure boot, signed firmware, and identity-based access controls that persist throughout the asset lifecycle. Third, prioritize modular platform architectures that separate data ingestion, edge processing, and analytics tiers to allow incremental modernization while maintaining core operational continuity.
Fourth, align sourcing strategies with supply chain resilience goals by qualifying multiple suppliers and by incorporating contractual terms that address tariff exposure, lead-time variability, and component substitution. Fifth, invest in internal capability building by creating a cross-functional IIoT governance body that includes OT, IT, procurement, and cybersecurity representation to accelerate decision making and ensure enduring operational ownership. Finally, design pilot programs that validate not just technological feasibility but also operational workflows, maintenance processes, and change management approaches. By following these steps, organizations can reduce implementation risk, improve vendor negotiations, and speed integration of device-generated insights into established operational processes.
A transparent, practitioner-focused research approach combining interviews, technical assessments, and literature synthesis to inform practical IIoT recommendations
The findings and recommendations in this report are derived from a structured research methodology that combined qualitative interviews, technical assessments, and secondary literature synthesis to ensure a comprehensive perspective on IIoT data collection and device management. Primary inputs included conversations with practitioners across operations, engineering, procurement, and cybersecurity functions to capture real-world constraints, deployment experiences, and priority outcomes. These interviews were complemented by technical assessments of platform architectures, connectivity options, and device lifecycle processes to ground strategic recommendations in operational realities.
Secondary research encompassed vendor documentation, standards bodies publications, and publicly available case studies to triangulate best practices and identify recurring implementation patterns. Throughout the research process, emphasis was placed on identifying practical trade-offs and decision points rather than on high-level projections, ensuring that guidance remains applicable across differing organizational maturities. Where applicable, analytic frameworks were stress-tested against representative use cases to validate that recommendations map to measurable operational improvements. The methodology prioritizes transparency, reproducibility, and practitioner relevance, and it informs both the diagnostic and prescriptive elements of the report.
Summative insights emphasizing modular architectures, rigorous security, and resilient sourcing to convert IIoT potential into tangible operational benefits
In conclusion, the evolution of data collection and device management platforms is enabling a new class of industrial capabilities that fuse real-time operational control with enterprise-grade analytics and security. The combination of edge-native processing, device-centric security, and flexible connectivity options provides organizations with the tools to improve asset reliability, reduce unplanned downtime, and support regulatory compliance. Nevertheless, realizing these benefits requires deliberate architectural choices, resilient sourcing strategies, and cross-functional governance that align technical capabilities with operational objectives.
As organizations plan their IIoT roadmaps, they should emphasize modular platforms that enable phased adoption, insist on rigorous security and interoperability requirements to limit operational risk, and cultivate supplier relationships that can adapt to shifting trade and tariff dynamics. Taken together, these approaches position industrial enterprises to harness device-level data as a reliable source of operational advantage while maintaining the agility needed to respond to market and regulatory changes. The recommendations and insights in this report are intended to serve as an actionable guide for leaders seeking to translate IIoT potential into measurable and sustainable operational improvements.
Note: PDF & Excel + Online Access - 1 Year
Table of Contents
193 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Adoption of edge computing architectures to enable real-time IIoT data processing and analytics across remote industrial sites
- 5.2. Deployment of secure firmware over-the-air update mechanisms to ensure device integrity and compliance in IIoT networks
- 5.3. Implementation of cellular IoT connectivity solutions leveraging LTE-M and NB-IoT for widespread industrial sensor management
- 5.4. Integration of digital twin technologies to simulate monitor and optimize performance of industrial asset networks
- 5.5. Utilization of blockchain-based data provenance frameworks to enhance trust and auditability in IIoT ecosystems
- 5.6. Application of machine learning models at the edge to predict equipment failures and optimize maintenance schedules
- 5.7. Standardization efforts around OPC UA and MQTT protocols to streamline interoperability among heterogeneous IIoT devices
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. IIoT Data Collection & Device Management Platform Market, by Component
- 8.1. Hardware
- 8.2. Services
- 8.3. Software Platform
- 9. IIoT Data Collection & Device Management Platform Market, by Connectivity
- 9.1. Cellular
- 9.2. Ethernet
- 9.3. Lpw An
- 9.4. Wi Fi
- 10. IIoT Data Collection & Device Management Platform Market, by Deployment Mode
- 10.1. Cloud
- 10.2. On Premises
- 11. IIoT Data Collection & Device Management Platform Market, by Application
- 11.1. Asset Tracking
- 11.2. Predictive Maintenance
- 11.3. Quality Control
- 11.4. Remote Monitoring
- 12. IIoT Data Collection & Device Management Platform Market, by Industry Vertical
- 12.1. Energy And Utilities
- 12.1.1. Electricity And Power
- 12.1.2. Oil And Gas
- 12.1.3. Water And Wastewater
- 12.2. Healthcare
- 12.3. Manufacturing
- 12.3.1. Discrete Manufacturing
- 12.3.2. Process Manufacturing
- 12.4. Transportation And Logistics
- 12.4.1. Air
- 12.4.2. Maritime
- 12.4.3. Rail
- 12.4.4. Road
- 13. IIoT Data Collection & Device Management Platform Market, by Region
- 13.1. Americas
- 13.1.1. North America
- 13.1.2. Latin America
- 13.2. Europe, Middle East & Africa
- 13.2.1. Europe
- 13.2.2. Middle East
- 13.2.3. Africa
- 13.3. Asia-Pacific
- 14. IIoT Data Collection & Device Management Platform Market, by Group
- 14.1. ASEAN
- 14.2. GCC
- 14.3. European Union
- 14.4. BRICS
- 14.5. G7
- 14.6. NATO
- 15. IIoT Data Collection & Device Management Platform Market, by Country
- 15.1. United States
- 15.2. Canada
- 15.3. Mexico
- 15.4. Brazil
- 15.5. United Kingdom
- 15.6. Germany
- 15.7. France
- 15.8. Russia
- 15.9. Italy
- 15.10. Spain
- 15.11. China
- 15.12. India
- 15.13. Japan
- 15.14. Australia
- 15.15. South Korea
- 16. Competitive Landscape
- 16.1. Market Share Analysis, 2024
- 16.2. FPNV Positioning Matrix, 2024
- 16.3. Competitive Analysis
- 16.3.1. ABB Ltd.
- 16.3.2. Advantech Co., Ltd.
- 16.3.3. Amazon Web Services, Inc.
- 16.3.4. Bosch Software Innovations GmbH
- 16.3.5. Cisco Systems, Inc.
- 16.3.6. Emerson Electric Co.
- 16.3.7. General Electric Company
- 16.3.8. Hitachi Vantara LLC
- 16.3.9. HMS Networks AB
- 16.3.10. Honeywell International Inc.
- 16.3.11. International Business Machines Corporation
- 16.3.12. Microsoft Corporation
- 16.3.13. Nokia Corporation
- 16.3.14. Oracle Corporation
- 16.3.15. PTC, Inc.
- 16.3.16. Qualcomm Incorporated
- 16.3.17. Rockwell Automation, Inc.
- 16.3.18. SAP SE
- 16.3.19. Siemens AG
- 16.3.20. Sierra Wireless, Inc.
- 16.3.21. Tulip Interfaces, Inc.
- 16.3.22. Zerynth S.p.A.
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.


