
IIoT Data Collection & Device Management Platform Market by Industry Vertical (Energy And Utilities, Healthcare, Manufacturing), Application (Asset Tracking, Predictive Maintenance, Quality Control), Deployment Mode, Component, Connectivity - Global Forec
Description
The IIoT Data Collection & Device Management Platform Market was valued at USD 4.16 billion in 2024 and is projected to grow to USD 5.37 billion in 2025, with a CAGR of 28.83%, reaching USD 31.63 billion by 2032.
Groundbreaking Introduction to Industrial IoT Data Collection Platforms Designing Scalable Device Management Frameworks to Accelerate Digital Transformation and Operational Agility
Industrial enterprises are experiencing an unprecedented evolution as the convergence of operational technology and information technology reshapes traditional processes. At the heart of this transformation lies the ability to collect, process, and act on data generated by a rapidly expanding array of sensors and devices. These capabilities are driving more informed decision-making, reducing downtime, and unlocking new avenues for productivity enhancement. Consequently, organizations are under pressure to adopt robust platforms that not only ingest diverse data streams in real time but also seamlessly orchestrate device management across geographically dispersed networks.
As digital transformation initiatives accelerate, the demand for scalable architectures that support high-velocity data ingestion and secure device provisioning has never been greater. Leaders are seeking solutions that offer granular visibility into asset health, streamlined firmware updates, and adaptive connectivity options suitable for harsh industrial environments. This introduction sets the stage for a deep dive into the technological shifts, economic forces, and strategic imperatives that define the contemporary IIoT data collection and device management landscape.
Exploring the Transformative Shifts in Industrial IoT Landscape as Edge Computing Converges with AI Analytics to Redefine Data-Driven Decision Making Across Industries
Recent years have witnessed a profound shift in how industrial organizations harness data at the network edge. Edge computing is converging with artificial intelligence to enable real-time analytics directly on devices, minimizing latency and mitigating bandwidth constraints. This dynamic interplay is empowering predictive maintenance applications to identify anomalies before they escalate into costly failures. Simultaneously, the maturation of digital twin technologies is allowing enterprises to simulate complex operations in virtual environments, driving process optimization initiatives and reducing time to market.
Moreover, the rollout of high-bandwidth low-latency 5G networks is opening new horizons for connected machinery, autonomous vehicles, and remote monitoring use cases. The proliferation of open standards and interoperable protocols is fostering a more collaborative ecosystem in which equipment manufacturers, platform providers, and system integrators co-innovate. These transformative shifts are catalyzing a new era of intelligent manufacturing, utilities management, and logistics orchestration, laying the groundwork for more resilient and efficient industrial value chains.
Assessing the Cumulative Impact of 2025 United States Trade Tariffs on Industrial IoT Supply Chains Device Costs and Cross-Border Connectivity Operations
The imposition of United States tariffs on technology components and communications modules, effective in 2025, is reshaping global supply chains for industrial IoT solutions. Increased duties on semiconductor chips and sensor assemblies are prompting vendors to reevaluate sourcing strategies and explore localized manufacturing partnerships. Consequently, procurement teams are reassessing long-term contracts and engaging in dual-sourcing arrangements to mitigate exposure to escalating cost pressures.
In parallel, companies are accelerating the adoption of modular device architectures that can accommodate interchangeable connectivity options and semiconductor variants. This approach reduces dependency on specific component suppliers and enhances agility in responding to tariff-induced price fluctuations. Additionally, strategic alliances with regional distributors and contract manufacturers are gaining traction as a means to hedge against single-source vulnerabilities. As businesses adapt to this evolving economic landscape, the collective impact of tariff measures is reshaping the economics of IIoT deployments and influencing platform roadmaps across multiple industry segments.
Key Segmentation Insights into Industry Vertical Application Deployment Mode Component and Connectivity Strategies Shaping Next Generation IIoT Adoption Dynamics
Deep insights into the IIoT data collection ecosystem emerge when one examines how industry verticals, applications, deployment models, platform components, and connectivity technologies intertwine to shape adoption trajectories. In energy and utilities, operators in electricity and power, oil and gas, and water and wastewater sectors demand resilient networks capable of capturing high-frequency telemetry. Healthcare providers prioritize predictive maintenance for critical equipment alongside remote patient monitoring, while manufacturing organizations leverage both discrete and process manufacturing analytics to enhance quality control and throughput. Transportation and logistics stakeholders spanning air, maritime, rail, and road environments rely on real-time asset tracking to optimize fleet performance and ensure supply chain integrity.
Across applications, initiatives range from asset tracking and predictive maintenance to comprehensive quality control and remote monitoring solutions. Enterprises are evaluating cloud-native deployment models against on-premises alternatives, weighing factors such as latency, data sovereignty, and total cost of ownership. The interplay between hardware, software platform, and professional services dictates integration complexity and time to value. Connectivity choices-including cellular, Ethernet, LPWAN, and Wi-Fi-are determined by coverage requirements, power constraints, and security mandates. By understanding how these dimensions interrelate, organizations can fine-tune their IIoT strategies and align technology investments with specific operational objectives.
Comprehensive Regional Insights into Americas Europe Middle East Africa and Asia-Pacific IIoT Adoption Trends Revealing Distinct Market Priorities and Growth Enablers
Regional dynamics in the IIoT arena are influenced by economic priorities, regulatory frameworks, and infrastructure maturity. In the Americas, leading manufacturing hubs and energy infrastructure modernization programs are driving adoption of data-driven asset management solutions. North American companies are investing heavily in edge analytics to support near-real-time decision-making, while Latin American operators focus on foundational connectivity upgrades to accelerate digital transformation.
Across Europe, the Middle East, and Africa, stringent cybersecurity and data privacy regulations are prompting vendors to embed robust encryption and identity management capabilities into their offerings. Mature industrial economies in Europe emphasize interoperability standards and open architectures, whereas Gulf region stakeholders are funding smart grid and predictive maintenance initiatives to enhance energy efficiency. In Africa, pilots centered on remote monitoring for mining and utilities are laying the groundwork for scalable deployments.
Asia-Pacific markets exhibit diverse maturity levels: advanced manufacturing centers in East Asia lead in sophisticated platform adoption, Southeast Asian nations prioritize cost-effective sensor networks and LPWAN coverage, and Oceania invests in remote asset management for mining and agriculture. These regional insights underscore the importance of tailoring IIoT strategies to local market conditions and regulatory landscapes.
Critical Analysis of Leading IIoT Platform Providers and Ecosystem Partners Illustrating Competitive Differentiators Collaboration Models and Technology Roadmaps
An examination of leading platform providers and ecosystem partners reveals a competitive landscape defined by differentiated technology roadmaps and strategic alliances. Established IT and networking giants continue to enhance their IIoT offerings with native cloud connectivity, edge orchestration modules, and embedded AI toolkits. Their expansive partner networks facilitate rapid deployment and integration across diverse industrial environments. Meanwhile, specialized software vendors and start-ups are focusing on niche capabilities-such as advanced time-series analytics, streamlined device on-boarding, and domain-specific applications-to carve out distinct positions.
Collaborative partnerships between infrastructure providers and industrial automation originals equipment manufacturers are accelerating the convergence of OT and IT stacks. These alliances enable deeper vertical expertise, allowing tailored solutions for sectors like discrete manufacturing, process industries, and logistics. Additionally, value-added resellers and system integrators play a pivotal role in customizing platform deployments, ensuring compatibility with legacy control systems and enhancing change management processes. This ecosystem-centric approach is fostering innovation while driving down implementation timelines and total cost of ownership.
Actionable Recommendations for Industry Leaders to Enhance IIoT Data Collection Strategies Optimize Device Management and Drive Sustainable Competitive Advantage Through Innovation
Industry leaders seeking to maximize the value of IIoT data collection should prioritize standardization of device interfaces and communication protocols to streamline integration efforts and reduce operational friction. Investing in comprehensive cybersecurity frameworks-with multi-factor authentication, end-to-end encryption, and continuous threat monitoring-will safeguard critical infrastructure against evolving threats. Furthermore, organizations should adopt modular and containerized software architectures that enable rapid feature updates and seamless scalability across edge and cloud environments.
Building internal expertise through targeted training programs and cross-functional teams will ensure alignment between operations and IT stakeholders. Leaders are encouraged to pilot edge AI deployments to validate use cases before scaling broadly, leveraging data lakes and hybrid cloud architectures for flexible analytics pipelines. Finally, cultivating a culture of continuous improvement-driven by rigorous KPI tracking and periodic technology road mapping-will help sustain momentum and future-proof IIoT strategies against disruptive market shifts.
Robust Research Methodology Employing Integrated Primary Secondary Data Collection Expert Interviews and Triangulation Techniques to Ensure Rigorous Insights and Unbiased Analysis
Our research methodology integrates a blend of primary and secondary data collection, underpinned by rigorous triangulation techniques to ensure validity and reliability. Extensive interviews with senior executives, operations managers, and solution architects provided firsthand perspectives on emerging pain points and investment priorities. These qualitative insights were complemented by a thorough review of technical white papers, industry publications, and vendor documentation to contextualize market developments and technology trends.
Quantitative data was gathered through structured surveys targeting diverse end users across critical industry verticals. Responses were analyzed to identify adoption patterns, connectivity preferences, and deployment challenges. Cross-referencing findings with project case studies and pilot program outcomes allowed us to refine assumptions and validate emerging themes. The combination of expert validation workshops and continuous data verification ensures that the resulting analysis offers a comprehensive and unbiased view of the IIoT data collection and device management ecosystem.
Conclusive Reflections on IIoT Data Collection and Device Management Trends Highlighting Strategic Imperatives and Future-Proof Pathways for Industrial Organizations Globally
The evolution of IIoT data collection and device management stands at the nexus of technological innovation and strategic enterprise imperatives. As organizations navigate complex supply chains reshaped by tariff fluctuations and geopolitical dynamics, the ability to deploy adaptive, secure, and interoperable platforms will define competitive differentiation. A nuanced understanding of industry-specific needs, application demands, and regional priorities is essential for charting an effective implementation roadmap.
Looking ahead, advances in edge intelligence, enhanced connectivity standards, and modular software architectures promise to unlock new possibilities for proactive maintenance, operational resilience, and sustainability outcomes. Enterprises that embrace best practices in cybersecurity, data governance, and continuous skill development will be best positioned to capitalize on these opportunities. This conclusion underscores the imperative for industrial organizations to align technology investments with long-term strategic objectives, thereby future-proofing operations in a rapidly evolving digital landscape.
Market Segmentation & Coverage
This research report categorizes to forecast the revenues and analyze trends in each of the following sub-segmentations:
Industry Vertical
Energy And Utilities
Electricity And Power
Oil And Gas
Water And Wastewater
Healthcare
Manufacturing
Discrete Manufacturing
Process Manufacturing
Transportation And Logistics
Air
Maritime
Rail
Road
Application
Asset Tracking
Predictive Maintenance
Quality Control
Remote Monitoring
Deployment Mode
Cloud
On Premises
Component
Hardware
Services
Software Platform
Connectivity
Cellular
Ethernet
Lpw An
Wi Fi
This research report categorizes to forecast the revenues and analyze trends in each of the following sub-regions:
Americas
North America
United States
Canada
Mexico
Latin America
Brazil
Argentina
Chile
Colombia
Peru
Europe, Middle East & Africa
Europe
United Kingdom
Germany
France
Russia
Italy
Spain
Netherlands
Sweden
Poland
Switzerland
Middle East
United Arab Emirates
Saudi Arabia
Qatar
Turkey
Israel
Africa
South Africa
Nigeria
Egypt
Kenya
Asia-Pacific
China
India
Japan
Australia
South Korea
Indonesia
Thailand
Malaysia
Singapore
Taiwan
This research report categorizes to delves into recent significant developments and analyze trends in each of the following companies:
Siemens AG
Microsoft Corporation
International Business Machines Corporation
SAP SE
PTC, Inc.
Oracle Corporation
Cisco Systems, Inc.
General Electric Company
Bosch Software Innovations GmbH
Hitachi Vantara LLC
Note: PDF & Excel + Online Access - 1 Year
Groundbreaking Introduction to Industrial IoT Data Collection Platforms Designing Scalable Device Management Frameworks to Accelerate Digital Transformation and Operational Agility
Industrial enterprises are experiencing an unprecedented evolution as the convergence of operational technology and information technology reshapes traditional processes. At the heart of this transformation lies the ability to collect, process, and act on data generated by a rapidly expanding array of sensors and devices. These capabilities are driving more informed decision-making, reducing downtime, and unlocking new avenues for productivity enhancement. Consequently, organizations are under pressure to adopt robust platforms that not only ingest diverse data streams in real time but also seamlessly orchestrate device management across geographically dispersed networks.
As digital transformation initiatives accelerate, the demand for scalable architectures that support high-velocity data ingestion and secure device provisioning has never been greater. Leaders are seeking solutions that offer granular visibility into asset health, streamlined firmware updates, and adaptive connectivity options suitable for harsh industrial environments. This introduction sets the stage for a deep dive into the technological shifts, economic forces, and strategic imperatives that define the contemporary IIoT data collection and device management landscape.
Exploring the Transformative Shifts in Industrial IoT Landscape as Edge Computing Converges with AI Analytics to Redefine Data-Driven Decision Making Across Industries
Recent years have witnessed a profound shift in how industrial organizations harness data at the network edge. Edge computing is converging with artificial intelligence to enable real-time analytics directly on devices, minimizing latency and mitigating bandwidth constraints. This dynamic interplay is empowering predictive maintenance applications to identify anomalies before they escalate into costly failures. Simultaneously, the maturation of digital twin technologies is allowing enterprises to simulate complex operations in virtual environments, driving process optimization initiatives and reducing time to market.
Moreover, the rollout of high-bandwidth low-latency 5G networks is opening new horizons for connected machinery, autonomous vehicles, and remote monitoring use cases. The proliferation of open standards and interoperable protocols is fostering a more collaborative ecosystem in which equipment manufacturers, platform providers, and system integrators co-innovate. These transformative shifts are catalyzing a new era of intelligent manufacturing, utilities management, and logistics orchestration, laying the groundwork for more resilient and efficient industrial value chains.
Assessing the Cumulative Impact of 2025 United States Trade Tariffs on Industrial IoT Supply Chains Device Costs and Cross-Border Connectivity Operations
The imposition of United States tariffs on technology components and communications modules, effective in 2025, is reshaping global supply chains for industrial IoT solutions. Increased duties on semiconductor chips and sensor assemblies are prompting vendors to reevaluate sourcing strategies and explore localized manufacturing partnerships. Consequently, procurement teams are reassessing long-term contracts and engaging in dual-sourcing arrangements to mitigate exposure to escalating cost pressures.
In parallel, companies are accelerating the adoption of modular device architectures that can accommodate interchangeable connectivity options and semiconductor variants. This approach reduces dependency on specific component suppliers and enhances agility in responding to tariff-induced price fluctuations. Additionally, strategic alliances with regional distributors and contract manufacturers are gaining traction as a means to hedge against single-source vulnerabilities. As businesses adapt to this evolving economic landscape, the collective impact of tariff measures is reshaping the economics of IIoT deployments and influencing platform roadmaps across multiple industry segments.
Key Segmentation Insights into Industry Vertical Application Deployment Mode Component and Connectivity Strategies Shaping Next Generation IIoT Adoption Dynamics
Deep insights into the IIoT data collection ecosystem emerge when one examines how industry verticals, applications, deployment models, platform components, and connectivity technologies intertwine to shape adoption trajectories. In energy and utilities, operators in electricity and power, oil and gas, and water and wastewater sectors demand resilient networks capable of capturing high-frequency telemetry. Healthcare providers prioritize predictive maintenance for critical equipment alongside remote patient monitoring, while manufacturing organizations leverage both discrete and process manufacturing analytics to enhance quality control and throughput. Transportation and logistics stakeholders spanning air, maritime, rail, and road environments rely on real-time asset tracking to optimize fleet performance and ensure supply chain integrity.
Across applications, initiatives range from asset tracking and predictive maintenance to comprehensive quality control and remote monitoring solutions. Enterprises are evaluating cloud-native deployment models against on-premises alternatives, weighing factors such as latency, data sovereignty, and total cost of ownership. The interplay between hardware, software platform, and professional services dictates integration complexity and time to value. Connectivity choices-including cellular, Ethernet, LPWAN, and Wi-Fi-are determined by coverage requirements, power constraints, and security mandates. By understanding how these dimensions interrelate, organizations can fine-tune their IIoT strategies and align technology investments with specific operational objectives.
Comprehensive Regional Insights into Americas Europe Middle East Africa and Asia-Pacific IIoT Adoption Trends Revealing Distinct Market Priorities and Growth Enablers
Regional dynamics in the IIoT arena are influenced by economic priorities, regulatory frameworks, and infrastructure maturity. In the Americas, leading manufacturing hubs and energy infrastructure modernization programs are driving adoption of data-driven asset management solutions. North American companies are investing heavily in edge analytics to support near-real-time decision-making, while Latin American operators focus on foundational connectivity upgrades to accelerate digital transformation.
Across Europe, the Middle East, and Africa, stringent cybersecurity and data privacy regulations are prompting vendors to embed robust encryption and identity management capabilities into their offerings. Mature industrial economies in Europe emphasize interoperability standards and open architectures, whereas Gulf region stakeholders are funding smart grid and predictive maintenance initiatives to enhance energy efficiency. In Africa, pilots centered on remote monitoring for mining and utilities are laying the groundwork for scalable deployments.
Asia-Pacific markets exhibit diverse maturity levels: advanced manufacturing centers in East Asia lead in sophisticated platform adoption, Southeast Asian nations prioritize cost-effective sensor networks and LPWAN coverage, and Oceania invests in remote asset management for mining and agriculture. These regional insights underscore the importance of tailoring IIoT strategies to local market conditions and regulatory landscapes.
Critical Analysis of Leading IIoT Platform Providers and Ecosystem Partners Illustrating Competitive Differentiators Collaboration Models and Technology Roadmaps
An examination of leading platform providers and ecosystem partners reveals a competitive landscape defined by differentiated technology roadmaps and strategic alliances. Established IT and networking giants continue to enhance their IIoT offerings with native cloud connectivity, edge orchestration modules, and embedded AI toolkits. Their expansive partner networks facilitate rapid deployment and integration across diverse industrial environments. Meanwhile, specialized software vendors and start-ups are focusing on niche capabilities-such as advanced time-series analytics, streamlined device on-boarding, and domain-specific applications-to carve out distinct positions.
Collaborative partnerships between infrastructure providers and industrial automation originals equipment manufacturers are accelerating the convergence of OT and IT stacks. These alliances enable deeper vertical expertise, allowing tailored solutions for sectors like discrete manufacturing, process industries, and logistics. Additionally, value-added resellers and system integrators play a pivotal role in customizing platform deployments, ensuring compatibility with legacy control systems and enhancing change management processes. This ecosystem-centric approach is fostering innovation while driving down implementation timelines and total cost of ownership.
Actionable Recommendations for Industry Leaders to Enhance IIoT Data Collection Strategies Optimize Device Management and Drive Sustainable Competitive Advantage Through Innovation
Industry leaders seeking to maximize the value of IIoT data collection should prioritize standardization of device interfaces and communication protocols to streamline integration efforts and reduce operational friction. Investing in comprehensive cybersecurity frameworks-with multi-factor authentication, end-to-end encryption, and continuous threat monitoring-will safeguard critical infrastructure against evolving threats. Furthermore, organizations should adopt modular and containerized software architectures that enable rapid feature updates and seamless scalability across edge and cloud environments.
Building internal expertise through targeted training programs and cross-functional teams will ensure alignment between operations and IT stakeholders. Leaders are encouraged to pilot edge AI deployments to validate use cases before scaling broadly, leveraging data lakes and hybrid cloud architectures for flexible analytics pipelines. Finally, cultivating a culture of continuous improvement-driven by rigorous KPI tracking and periodic technology road mapping-will help sustain momentum and future-proof IIoT strategies against disruptive market shifts.
Robust Research Methodology Employing Integrated Primary Secondary Data Collection Expert Interviews and Triangulation Techniques to Ensure Rigorous Insights and Unbiased Analysis
Our research methodology integrates a blend of primary and secondary data collection, underpinned by rigorous triangulation techniques to ensure validity and reliability. Extensive interviews with senior executives, operations managers, and solution architects provided firsthand perspectives on emerging pain points and investment priorities. These qualitative insights were complemented by a thorough review of technical white papers, industry publications, and vendor documentation to contextualize market developments and technology trends.
Quantitative data was gathered through structured surveys targeting diverse end users across critical industry verticals. Responses were analyzed to identify adoption patterns, connectivity preferences, and deployment challenges. Cross-referencing findings with project case studies and pilot program outcomes allowed us to refine assumptions and validate emerging themes. The combination of expert validation workshops and continuous data verification ensures that the resulting analysis offers a comprehensive and unbiased view of the IIoT data collection and device management ecosystem.
Conclusive Reflections on IIoT Data Collection and Device Management Trends Highlighting Strategic Imperatives and Future-Proof Pathways for Industrial Organizations Globally
The evolution of IIoT data collection and device management stands at the nexus of technological innovation and strategic enterprise imperatives. As organizations navigate complex supply chains reshaped by tariff fluctuations and geopolitical dynamics, the ability to deploy adaptive, secure, and interoperable platforms will define competitive differentiation. A nuanced understanding of industry-specific needs, application demands, and regional priorities is essential for charting an effective implementation roadmap.
Looking ahead, advances in edge intelligence, enhanced connectivity standards, and modular software architectures promise to unlock new possibilities for proactive maintenance, operational resilience, and sustainability outcomes. Enterprises that embrace best practices in cybersecurity, data governance, and continuous skill development will be best positioned to capitalize on these opportunities. This conclusion underscores the imperative for industrial organizations to align technology investments with long-term strategic objectives, thereby future-proofing operations in a rapidly evolving digital landscape.
Market Segmentation & Coverage
This research report categorizes to forecast the revenues and analyze trends in each of the following sub-segmentations:
Industry Vertical
Energy And Utilities
Electricity And Power
Oil And Gas
Water And Wastewater
Healthcare
Manufacturing
Discrete Manufacturing
Process Manufacturing
Transportation And Logistics
Air
Maritime
Rail
Road
Application
Asset Tracking
Predictive Maintenance
Quality Control
Remote Monitoring
Deployment Mode
Cloud
On Premises
Component
Hardware
Services
Software Platform
Connectivity
Cellular
Ethernet
Lpw An
Wi Fi
This research report categorizes to forecast the revenues and analyze trends in each of the following sub-regions:
Americas
North America
United States
Canada
Mexico
Latin America
Brazil
Argentina
Chile
Colombia
Peru
Europe, Middle East & Africa
Europe
United Kingdom
Germany
France
Russia
Italy
Spain
Netherlands
Sweden
Poland
Switzerland
Middle East
United Arab Emirates
Saudi Arabia
Qatar
Turkey
Israel
Africa
South Africa
Nigeria
Egypt
Kenya
Asia-Pacific
China
India
Japan
Australia
South Korea
Indonesia
Thailand
Malaysia
Singapore
Taiwan
This research report categorizes to delves into recent significant developments and analyze trends in each of the following companies:
Siemens AG
Microsoft Corporation
International Business Machines Corporation
SAP SE
PTC, Inc.
Oracle Corporation
Cisco Systems, Inc.
General Electric Company
Bosch Software Innovations GmbH
Hitachi Vantara LLC
Note: PDF & Excel + Online Access - 1 Year
Table of Contents
191 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency & Pricing
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Adoption of edge computing architectures to enable real-time IIoT data processing and analytics across remote industrial sites
- 5.2. Deployment of secure firmware over-the-air update mechanisms to ensure device integrity and compliance in IIoT networks
- 5.3. Implementation of cellular IoT connectivity solutions leveraging LTE-M and NB-IoT for widespread industrial sensor management
- 5.4. Integration of digital twin technologies to simulate monitor and optimize performance of industrial asset networks
- 5.5. Utilization of blockchain-based data provenance frameworks to enhance trust and auditability in IIoT ecosystems
- 5.6. Application of machine learning models at the edge to predict equipment failures and optimize maintenance schedules
- 5.7. Standardization efforts around OPC UA and MQTT protocols to streamline interoperability among heterogeneous IIoT devices
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. IIoT Data Collection & Device Management Platform Market, by Industry Vertical
- 8.1. Energy And Utilities
- 8.1.1. Electricity And Power
- 8.1.2. Oil And Gas
- 8.1.3. Water And Wastewater
- 8.2. Healthcare
- 8.3. Manufacturing
- 8.3.1. Discrete Manufacturing
- 8.3.2. Process Manufacturing
- 8.4. Transportation And Logistics
- 8.4.1. Air
- 8.4.2. Maritime
- 8.4.3. Rail
- 8.4.4. Road
- 9. IIoT Data Collection & Device Management Platform Market, by Application
- 9.1. Asset Tracking
- 9.2. Predictive Maintenance
- 9.3. Quality Control
- 9.4. Remote Monitoring
- 10. IIoT Data Collection & Device Management Platform Market, by Deployment Mode
- 10.1. Cloud
- 10.2. On Premises
- 11. IIoT Data Collection & Device Management Platform Market, by Component
- 11.1. Hardware
- 11.2. Services
- 11.3. Software Platform
- 12. IIoT Data Collection & Device Management Platform Market, by Connectivity
- 12.1. Cellular
- 12.2. Ethernet
- 12.3. Lpw An
- 12.4. Wi Fi
- 13. IIoT Data Collection & Device Management Platform Market, by Region
- 13.1. Americas
- 13.1.1. North America
- 13.1.2. Latin America
- 13.2. Europe, Middle East & Africa
- 13.2.1. Europe
- 13.2.2. Middle East
- 13.2.3. Africa
- 13.3. Asia-Pacific
- 14. IIoT Data Collection & Device Management Platform Market, by Group
- 14.1. ASEAN
- 14.2. GCC
- 14.3. European Union
- 14.4. BRICS
- 14.5. G7
- 14.6. NATO
- 15. IIoT Data Collection & Device Management Platform Market, by Country
- 15.1. United States
- 15.2. Canada
- 15.3. Mexico
- 15.4. Brazil
- 15.5. United Kingdom
- 15.6. Germany
- 15.7. France
- 15.8. Russia
- 15.9. Italy
- 15.10. Spain
- 15.11. China
- 15.12. India
- 15.13. Japan
- 15.14. Australia
- 15.15. South Korea
- 16. Competitive Landscape
- 16.1. Market Share Analysis, 2024
- 16.2. FPNV Positioning Matrix, 2024
- 16.3. Competitive Analysis
- 16.3.1. Siemens AG
- 16.3.2. Microsoft Corporation
- 16.3.3. International Business Machines Corporation
- 16.3.4. SAP SE
- 16.3.5. PTC, Inc.
- 16.3.6. Oracle Corporation
- 16.3.7. Cisco Systems, Inc.
- 16.3.8. General Electric Company
- 16.3.9. Bosch Software Innovations GmbH
- 16.3.10. Hitachi Vantara LLC
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.