Healthcare Robotics Market by Product Type (Diagnostic & Imaging Robots, Noninvasive-Radiosurgery Robotic Systems, Pharmacy & Laboratory Robotics), Technology (Artificial Intelligence, Augmented Reality, Internet of Things (IoT)), Application, End-User -
Description
The Healthcare Robotics Market was valued at USD 15.84 billion in 2024 and is projected to grow to USD 17.33 billion in 2025, with a CAGR of 9.91%, reaching USD 33.73 billion by 2032.
Introduction that positions robotics as a catalyst for safer, more precise, and scalable clinical pathways across diagnostics, surgery, and rehabilitation
Healthcare robotics stands at the intersection of clinical need, engineering advance, and organizational change. Recent advances in sensing, control systems, and software architectures have shifted robotics from isolated innovations toward integrated clinical tools that support safer operations, extend clinician capabilities, and automate routine workflows. As clinical teams face growing pressure to improve outcomes while controlling costs, robotics is emerging as a tool that can reduce variability in procedures, speed recovery times, and enable new models of care delivery that extend beyond the operating room.
Transitioning from experimental pilots to standardized clinical practice requires more than technological maturity; it demands clear alignment with care pathways, compatibility with hospital IT and sterilization processes, and economical service models. Hospitals and surgical centers are reallocating capital and operational budgets to prioritize devices that demonstrate reproducible clinical benefit and predictable service requirements. At the same time, developers are expanding beyond single-use device concepts to integrated platforms that combine sensing, decision-support algorithms, and workflow automation. This shift is increasing demand for multidisciplinary vendor engagement, requiring organizations to think holistically about procurement, training, and lifecycle support rather than one-off equipment purchases.
Transformative technological convergence, changing care models, and outcome-driven commercialization that are redefining how robotics integrates into health system operations and patient pathways
The landscape of healthcare robotics is undergoing transformative shifts driven by technology convergence, changing care models, and evolving regulatory expectations. Artificial intelligence and machine learning are enabling systems to process multimodal data in real time, reducing cognitive load on clinicians and improving decision support during complex procedures. Concurrently, the convergence of robotics with augmented reality and connected devices is altering training paradigms and intraoperative guidance, turning static preoperative plans into dynamic, data-driven workflows that adapt during care delivery.
Operational models are also changing. Health systems are exploring decentralized care pathways, where robotics and telepresence extend specialist capabilities to community settings and ambulatory centers. This decentralization is complemented by a stronger focus on robotic solutions that address diagnostics, pharmacy automation, rehabilitation, and logistics, not only surgery. Regulators and payers are adopting more outcome-oriented frameworks, encouraging vendors to demonstrate real-world effectiveness, usability, and post-market surveillance. As a result, commercialization strategies emphasize clinical evidence generation, interoperable platforms, and durable service offerings that reduce total cost of ownership while providing measurable improvements in patient outcomes and clinician productivity.
Comprehensive assessment of how evolving United States tariff measures in 2025 will influence supply chain resilience, procurement dynamics, and manufacturing localization choices in robotics
United States tariff actions and trade policy shifts planned for 2025 will create a cascade of effects for healthcare robotics supply chains, procurement strategies, and manufacturing footprints. Increased import duties on select components or finished assemblies will raise landed costs for devices that rely on complex global value chains; those direct cost pressures will be felt most acutely by suppliers that depend on specialized motors, sensors, and semiconductor components sourced from constrained geographies. Beyond direct price effects, tariffs introduce procurement volatility and longer lead times as buyers and suppliers reassess sourcing and inventory strategies to manage risk.
In response, many stakeholders will accelerate regionalization and nearshoring strategies to reduce exposure to tariff volatility and to shorten replenishment cycles. Contract manufacturers and original equipment manufacturers will explore dual-sourcing models and expanded local content strategies, while clinical buyers will increase emphasis on supplier resilience, service network density, and total lifecycle support. Regulatory and contractual frameworks for warranty and maintenance may change as vendors adjust pricing and service models to reflect higher component costs and logistical complexity. Operationally, health systems can mitigate disruption by enhancing demand forecasting, establishing strategic safety-stock thresholds, and negotiating longer-term service-level agreements that lock in availability and pricing frameworks under predictable escalation rules.
Actionable segmentation intelligence highlighting how product categories, enabling technologies, clinical applications, and end-user contexts drive differentiated adoption and value capture
Segmentation-based insights reveal how product, technology, application, and end-user distinctions shape adoption trajectories and value propositions across healthcare robotics. When examining product categories, diagnostic and imaging robots provide enhanced precision for image-guided procedures, while noninvasive-radiosurgery robotic systems offer targeted therapy delivery with minimal tissue disruption. Pharmacy and laboratory robotics streamline medication dispensing and sample processing to improve throughput and safety. Rehabilitation robotic systems diversify into assistive robotic systems that support activities of daily living, exoskeleton robotic systems that augment mobility, and therapeutic robotic systems that enable guided repetitive therapies. Service and logistics robots reduce intra-facility transport burdens and free clinical staff for higher-value tasks, and surgical robots continue to evolve toward modular, multi-quadrant platforms that support broader procedure sets.
From a technology perspective, artificial intelligence and machine learning underpin adaptive control, predictive maintenance, and outcome analytics, while the Internet of Things provides the connectivity backbone for remote monitoring and fleet management. Augmented reality is emerging both for patient engagement AR that improves preoperative understanding and adherence, and for surgical training AR that accelerates clinician skill acquisition through immersive simulation. Application-specific pathways-cardiology, laparoscopy, neurology, and orthopedics-each impose distinct requirements for imaging integration, soft-tissue interaction, and force feedback, influencing robot design and control strategies. Finally, end-user contexts such as hospitals and clinics, rehabilitation centers, and surgical centers, including ambulatory surgery centers and day surgery centers, determine procurement cycles, capital versus operational spending preferences, and the intensity of required training and on-site support.
Regional strategic dynamics and adoption accelerators that determine product design, service models, and commercialization priorities across principal global healthcare regions
Regional dynamics will influence where clinical adoption accelerates and where supply chain investments concentrate. In the Americas, large integrated health systems and ambulatory surgical networks favor solutions that demonstrate interoperability with electronic health records, robust service networks, and clear value in throughput and outcomes. The regulatory environment in these markets emphasizes post-market surveillance, clinician credentialing, and evidence-based reimbursement pathways, shaping vendor strategies around clinical evidence generation and payer engagement.
In the Europe, Middle East & Africa region, diverse regulatory regimes and heterogeneous infrastructure create both opportunities and barriers. Western European markets often demand strong clinical studies and emphasize device safety and data protection, while emerging markets in the broader region present opportunities for lower-cost, durable solutions that prioritize ease of maintenance and local serviceability. The Asia-Pacific region demonstrates rapid adoption in centers of excellence and expansive investments in domestic manufacturing and robotics start-ups, with particular strength in integrating AI and edge-compute capabilities into clinical platforms. Collectively, these regional forces drive differentiated product roadmaps, service models, and go-to-market priorities that vendors must tailor to local procurement behaviors and regulatory expectations.
Competitive positioning and ecosystem strategies employed by established and emerging firms to capture clinical relevance, service advantage, and platform stickiness
Leading industry participants are shaping the competitive environment through platform investment, ecosystem partnerships, and expanded service offerings. Established surgical robotics vendors continue to invest in modular architectures and clinical evidence generation, while device manufacturers traditionally focused on orthopedics and implants are integrating robotic guidance to enhance implant positioning and workflow efficiency. New entrants and specialized firms are concentrating on diagnostic automation, pharmacy robotics, and rehabilitation platforms, leveraging partnerships with academic medical centers to validate clinical workflows and training curricula.
Across the competitive set, firms are differentiating on data ecosystems, aftermarket service models, and software-enabled feature roadmaps. Strategic alliances with imaging vendors, cloud-service providers, and systems integrators enable richer intraoperative data flows and streamlined deployment at scale. Meanwhile, an emphasis on subscription-based and outcome-linked contracting is prompting vendors to demonstrate predictable uptime, rapid field-service response, and a continuum of training programs to ensure consistent clinical performance. The resulting competitive dynamics reward organizations that can couple rigorous clinical validation with agile commercial models and resilient operational footprints.
Practical and prioritized strategic recommendations for vendors and health systems to accelerate adoption, ensure resilience, and align commercial models with clinical outcomes
Industry leaders should prioritize five pragmatic actions to sustain momentum and protect market access. First, invest in interoperable architectures that allow devices to plug into hospital IT and imaging systems, simplifying deployment and reducing integration risk. Second, accelerate clinical evidence programs that align with payer requirements and that quantify patient-centric outcomes and operational benefits. Third, diversify supply chains through nearshoring and dual-sourcing strategies to limit exposure to tariff and logistics volatility and to shorten lead times for critical components. Fourth, expand service and training offerings using a mix of hands-on, remote, and augmented reality-enabled learning to improve clinician competency and device utilization. Finally, explore outcome-linked contracting and flexible financing models that lower barriers for ambulatory and non-hospital facilities, while preserving predictable lifetime revenue streams for vendors.
Taken together, these actions create a defensible value proposition: technologies that are clinically validated, operationally resilient, and commercially flexible will capture a larger share of routine care pathways. Leaders must sequence investments carefully, focusing first on interoperability and clinical validation so that subsequent supply chain and commercial innovations have a reliable foundation in health system decision criteria.
Robust mixed-methods research approach combining primary stakeholder interviews, secondary technical review, and triangulation to ensure reproducible and actionable insights
The study employed a mixed-methods approach that combined structured primary research with rigorous secondary synthesis and expert validation. Primary inputs included in-depth interviews with clinicians, hospital procurement leaders, clinical engineers, and device service managers to understand real-world workflows, procurement constraints, and maintenance practices. These qualitative insights were systematically triangulated with product documentation, regulatory filings, peer-reviewed clinical literature, and technical white papers to validate device capabilities and clinical claims. Supply chain analyses incorporated component-level sourcing maps and publicly available trade data to assess exposure to geopolitical and tariff risks.
Data integrity was reinforced through iterative reviews with domain experts who provided clinical and operational perspectives, and through cross-checks of vendor-disclosed performance metrics against independent clinical evaluations. The methodology prioritized transparency by documenting interview protocols, inclusion criteria for secondary sources, and approaches to reconcile conflicting evidence. Throughout, the process emphasized reproducibility, ensuring that analytical assumptions are explicit and that conclusions reflect convergent evidence from multiple data streams rather than single-source assertions.
Conclusive synthesis emphasizing how integrated clinical validation, resilient operations, and adaptive commercial models determine long-term adoption and healthcare impact
Healthcare robotics is transitioning from a collection of point innovations to a coherent set of clinical and operational platforms that meaningfully alter care delivery. The interplay of advanced control systems, machine learning, connectivity, and immersive technologies is enabling new clinical capabilities while demanding closer attention to interoperability, clinical validation, and supply chain resilience. Regional dynamics, tariff policy shifts, and changing procurement priorities are not merely externalities; they actively reshape product roadmaps and service models. Vendors that align engineering investments with demonstrable clinical benefits and robust aftermarket offerings will be better positioned to win long-term adoption.
For health systems and providers, the optimal approach is pragmatic experimentation guided by clear success metrics, strong vendor governance, and investments in training and maintenance infrastructure. Decision-makers should adopt staged deployment strategies that validate clinical and operational value in controlled settings before scaling. By balancing technical ambition with operational realism, stakeholders can harness robotics to improve outcomes, optimize resource utilization, and expand access to specialized care without compromising financial or clinical resilience.
Please Note: PDF & Excel + Online Access - 1 Year
Introduction that positions robotics as a catalyst for safer, more precise, and scalable clinical pathways across diagnostics, surgery, and rehabilitation
Healthcare robotics stands at the intersection of clinical need, engineering advance, and organizational change. Recent advances in sensing, control systems, and software architectures have shifted robotics from isolated innovations toward integrated clinical tools that support safer operations, extend clinician capabilities, and automate routine workflows. As clinical teams face growing pressure to improve outcomes while controlling costs, robotics is emerging as a tool that can reduce variability in procedures, speed recovery times, and enable new models of care delivery that extend beyond the operating room.
Transitioning from experimental pilots to standardized clinical practice requires more than technological maturity; it demands clear alignment with care pathways, compatibility with hospital IT and sterilization processes, and economical service models. Hospitals and surgical centers are reallocating capital and operational budgets to prioritize devices that demonstrate reproducible clinical benefit and predictable service requirements. At the same time, developers are expanding beyond single-use device concepts to integrated platforms that combine sensing, decision-support algorithms, and workflow automation. This shift is increasing demand for multidisciplinary vendor engagement, requiring organizations to think holistically about procurement, training, and lifecycle support rather than one-off equipment purchases.
Transformative technological convergence, changing care models, and outcome-driven commercialization that are redefining how robotics integrates into health system operations and patient pathways
The landscape of healthcare robotics is undergoing transformative shifts driven by technology convergence, changing care models, and evolving regulatory expectations. Artificial intelligence and machine learning are enabling systems to process multimodal data in real time, reducing cognitive load on clinicians and improving decision support during complex procedures. Concurrently, the convergence of robotics with augmented reality and connected devices is altering training paradigms and intraoperative guidance, turning static preoperative plans into dynamic, data-driven workflows that adapt during care delivery.
Operational models are also changing. Health systems are exploring decentralized care pathways, where robotics and telepresence extend specialist capabilities to community settings and ambulatory centers. This decentralization is complemented by a stronger focus on robotic solutions that address diagnostics, pharmacy automation, rehabilitation, and logistics, not only surgery. Regulators and payers are adopting more outcome-oriented frameworks, encouraging vendors to demonstrate real-world effectiveness, usability, and post-market surveillance. As a result, commercialization strategies emphasize clinical evidence generation, interoperable platforms, and durable service offerings that reduce total cost of ownership while providing measurable improvements in patient outcomes and clinician productivity.
Comprehensive assessment of how evolving United States tariff measures in 2025 will influence supply chain resilience, procurement dynamics, and manufacturing localization choices in robotics
United States tariff actions and trade policy shifts planned for 2025 will create a cascade of effects for healthcare robotics supply chains, procurement strategies, and manufacturing footprints. Increased import duties on select components or finished assemblies will raise landed costs for devices that rely on complex global value chains; those direct cost pressures will be felt most acutely by suppliers that depend on specialized motors, sensors, and semiconductor components sourced from constrained geographies. Beyond direct price effects, tariffs introduce procurement volatility and longer lead times as buyers and suppliers reassess sourcing and inventory strategies to manage risk.
In response, many stakeholders will accelerate regionalization and nearshoring strategies to reduce exposure to tariff volatility and to shorten replenishment cycles. Contract manufacturers and original equipment manufacturers will explore dual-sourcing models and expanded local content strategies, while clinical buyers will increase emphasis on supplier resilience, service network density, and total lifecycle support. Regulatory and contractual frameworks for warranty and maintenance may change as vendors adjust pricing and service models to reflect higher component costs and logistical complexity. Operationally, health systems can mitigate disruption by enhancing demand forecasting, establishing strategic safety-stock thresholds, and negotiating longer-term service-level agreements that lock in availability and pricing frameworks under predictable escalation rules.
Actionable segmentation intelligence highlighting how product categories, enabling technologies, clinical applications, and end-user contexts drive differentiated adoption and value capture
Segmentation-based insights reveal how product, technology, application, and end-user distinctions shape adoption trajectories and value propositions across healthcare robotics. When examining product categories, diagnostic and imaging robots provide enhanced precision for image-guided procedures, while noninvasive-radiosurgery robotic systems offer targeted therapy delivery with minimal tissue disruption. Pharmacy and laboratory robotics streamline medication dispensing and sample processing to improve throughput and safety. Rehabilitation robotic systems diversify into assistive robotic systems that support activities of daily living, exoskeleton robotic systems that augment mobility, and therapeutic robotic systems that enable guided repetitive therapies. Service and logistics robots reduce intra-facility transport burdens and free clinical staff for higher-value tasks, and surgical robots continue to evolve toward modular, multi-quadrant platforms that support broader procedure sets.
From a technology perspective, artificial intelligence and machine learning underpin adaptive control, predictive maintenance, and outcome analytics, while the Internet of Things provides the connectivity backbone for remote monitoring and fleet management. Augmented reality is emerging both for patient engagement AR that improves preoperative understanding and adherence, and for surgical training AR that accelerates clinician skill acquisition through immersive simulation. Application-specific pathways-cardiology, laparoscopy, neurology, and orthopedics-each impose distinct requirements for imaging integration, soft-tissue interaction, and force feedback, influencing robot design and control strategies. Finally, end-user contexts such as hospitals and clinics, rehabilitation centers, and surgical centers, including ambulatory surgery centers and day surgery centers, determine procurement cycles, capital versus operational spending preferences, and the intensity of required training and on-site support.
Regional strategic dynamics and adoption accelerators that determine product design, service models, and commercialization priorities across principal global healthcare regions
Regional dynamics will influence where clinical adoption accelerates and where supply chain investments concentrate. In the Americas, large integrated health systems and ambulatory surgical networks favor solutions that demonstrate interoperability with electronic health records, robust service networks, and clear value in throughput and outcomes. The regulatory environment in these markets emphasizes post-market surveillance, clinician credentialing, and evidence-based reimbursement pathways, shaping vendor strategies around clinical evidence generation and payer engagement.
In the Europe, Middle East & Africa region, diverse regulatory regimes and heterogeneous infrastructure create both opportunities and barriers. Western European markets often demand strong clinical studies and emphasize device safety and data protection, while emerging markets in the broader region present opportunities for lower-cost, durable solutions that prioritize ease of maintenance and local serviceability. The Asia-Pacific region demonstrates rapid adoption in centers of excellence and expansive investments in domestic manufacturing and robotics start-ups, with particular strength in integrating AI and edge-compute capabilities into clinical platforms. Collectively, these regional forces drive differentiated product roadmaps, service models, and go-to-market priorities that vendors must tailor to local procurement behaviors and regulatory expectations.
Competitive positioning and ecosystem strategies employed by established and emerging firms to capture clinical relevance, service advantage, and platform stickiness
Leading industry participants are shaping the competitive environment through platform investment, ecosystem partnerships, and expanded service offerings. Established surgical robotics vendors continue to invest in modular architectures and clinical evidence generation, while device manufacturers traditionally focused on orthopedics and implants are integrating robotic guidance to enhance implant positioning and workflow efficiency. New entrants and specialized firms are concentrating on diagnostic automation, pharmacy robotics, and rehabilitation platforms, leveraging partnerships with academic medical centers to validate clinical workflows and training curricula.
Across the competitive set, firms are differentiating on data ecosystems, aftermarket service models, and software-enabled feature roadmaps. Strategic alliances with imaging vendors, cloud-service providers, and systems integrators enable richer intraoperative data flows and streamlined deployment at scale. Meanwhile, an emphasis on subscription-based and outcome-linked contracting is prompting vendors to demonstrate predictable uptime, rapid field-service response, and a continuum of training programs to ensure consistent clinical performance. The resulting competitive dynamics reward organizations that can couple rigorous clinical validation with agile commercial models and resilient operational footprints.
Practical and prioritized strategic recommendations for vendors and health systems to accelerate adoption, ensure resilience, and align commercial models with clinical outcomes
Industry leaders should prioritize five pragmatic actions to sustain momentum and protect market access. First, invest in interoperable architectures that allow devices to plug into hospital IT and imaging systems, simplifying deployment and reducing integration risk. Second, accelerate clinical evidence programs that align with payer requirements and that quantify patient-centric outcomes and operational benefits. Third, diversify supply chains through nearshoring and dual-sourcing strategies to limit exposure to tariff and logistics volatility and to shorten lead times for critical components. Fourth, expand service and training offerings using a mix of hands-on, remote, and augmented reality-enabled learning to improve clinician competency and device utilization. Finally, explore outcome-linked contracting and flexible financing models that lower barriers for ambulatory and non-hospital facilities, while preserving predictable lifetime revenue streams for vendors.
Taken together, these actions create a defensible value proposition: technologies that are clinically validated, operationally resilient, and commercially flexible will capture a larger share of routine care pathways. Leaders must sequence investments carefully, focusing first on interoperability and clinical validation so that subsequent supply chain and commercial innovations have a reliable foundation in health system decision criteria.
Robust mixed-methods research approach combining primary stakeholder interviews, secondary technical review, and triangulation to ensure reproducible and actionable insights
The study employed a mixed-methods approach that combined structured primary research with rigorous secondary synthesis and expert validation. Primary inputs included in-depth interviews with clinicians, hospital procurement leaders, clinical engineers, and device service managers to understand real-world workflows, procurement constraints, and maintenance practices. These qualitative insights were systematically triangulated with product documentation, regulatory filings, peer-reviewed clinical literature, and technical white papers to validate device capabilities and clinical claims. Supply chain analyses incorporated component-level sourcing maps and publicly available trade data to assess exposure to geopolitical and tariff risks.
Data integrity was reinforced through iterative reviews with domain experts who provided clinical and operational perspectives, and through cross-checks of vendor-disclosed performance metrics against independent clinical evaluations. The methodology prioritized transparency by documenting interview protocols, inclusion criteria for secondary sources, and approaches to reconcile conflicting evidence. Throughout, the process emphasized reproducibility, ensuring that analytical assumptions are explicit and that conclusions reflect convergent evidence from multiple data streams rather than single-source assertions.
Conclusive synthesis emphasizing how integrated clinical validation, resilient operations, and adaptive commercial models determine long-term adoption and healthcare impact
Healthcare robotics is transitioning from a collection of point innovations to a coherent set of clinical and operational platforms that meaningfully alter care delivery. The interplay of advanced control systems, machine learning, connectivity, and immersive technologies is enabling new clinical capabilities while demanding closer attention to interoperability, clinical validation, and supply chain resilience. Regional dynamics, tariff policy shifts, and changing procurement priorities are not merely externalities; they actively reshape product roadmaps and service models. Vendors that align engineering investments with demonstrable clinical benefits and robust aftermarket offerings will be better positioned to win long-term adoption.
For health systems and providers, the optimal approach is pragmatic experimentation guided by clear success metrics, strong vendor governance, and investments in training and maintenance infrastructure. Decision-makers should adopt staged deployment strategies that validate clinical and operational value in controlled settings before scaling. By balancing technical ambition with operational realism, stakeholders can harness robotics to improve outcomes, optimize resource utilization, and expand access to specialized care without compromising financial or clinical resilience.
Please Note: PDF & Excel + Online Access - 1 Year
Table of Contents
195 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Adoption of AI-driven surgical robots to improve precision in minimally invasive procedures
- 5.2. Implementation of telepresence robots for continuous remote patient monitoring and care coordination
- 5.3. Deployment of robotic exoskeleton systems to accelerate mobility rehabilitation and patient independence
- 5.4. Integration of cloud connectivity and IoT sensors in surgical robotics for real-time analytics
- 5.5. Advancements in soft robotics for delicate tissue manipulation in ophthalmic microsurgery applications
- 5.6. Patient-assistive robotics delivering personalized physiotherapy routines for accelerated post-operative recovery
- 5.7. Rise of collaborative robotic pharmacy automation systems to optimize medication dispensing accuracy
- 5.8. Regulatory advancements and FDA approvals accelerating commercialization of collaborative healthcare robots
- 5.9. Integration of augmented reality interfaces in robotic surgery platforms for enhanced surgeon guidance
- 5.10. Adoption of autonomous disinfection robots in hospitals to mitigate hospital acquired infection risks
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. Healthcare Robotics Market, by Product Type
- 8.1. Diagnostic & Imaging Robots
- 8.2. Noninvasive-Radiosurgery Robotic Systems
- 8.3. Pharmacy & Laboratory Robotics
- 8.4. Rehabilitation Robotic Systems
- 8.4.1. Assistive Robotic Systems
- 8.4.2. Exoskeleton Robotic Systems
- 8.4.3. Therapeutic Robotic Systems
- 8.5. Service & Logistics Robots
- 8.6. Surgical Robots
- 9. Healthcare Robotics Market, by Technology
- 9.1. Artificial Intelligence
- 9.2. Augmented Reality
- 9.2.1. Patient Engagement AR
- 9.2.2. Surgical Training AR
- 9.3. Internet of Things (IoT)
- 9.4. Machine Learning
- 10. Healthcare Robotics Market, by Application
- 10.1. Cardiology
- 10.2. Laparoscopy
- 10.3. Neurology
- 10.4. Orthopedics
- 11. Healthcare Robotics Market, by End-User
- 11.1. Hospitals & Clinics
- 11.2. Rehabilitation Centers
- 11.3. Surgical Centers
- 11.3.1. Ambulatory Surgery Centers
- 11.3.2. Day Surgery Centers
- 12. Healthcare Robotics Market, by Region
- 12.1. Americas
- 12.1.1. North America
- 12.1.2. Latin America
- 12.2. Europe, Middle East & Africa
- 12.2.1. Europe
- 12.2.2. Middle East
- 12.2.3. Africa
- 12.3. Asia-Pacific
- 13. Healthcare Robotics Market, by Group
- 13.1. ASEAN
- 13.2. GCC
- 13.3. European Union
- 13.4. BRICS
- 13.5. G7
- 13.6. NATO
- 14. Healthcare Robotics Market, by Country
- 14.1. United States
- 14.2. Canada
- 14.3. Mexico
- 14.4. Brazil
- 14.5. United Kingdom
- 14.6. Germany
- 14.7. France
- 14.8. Russia
- 14.9. Italy
- 14.10. Spain
- 14.11. China
- 14.12. India
- 14.13. Japan
- 14.14. Australia
- 14.15. South Korea
- 15. Competitive Landscape
- 15.1. Market Share Analysis, 2024
- 15.2. FPNV Positioning Matrix, 2024
- 15.3. Competitive Analysis
- 15.3.1. Intuitive Surgical, Inc.
- 15.3.2. Stryker Corporation
- 15.3.3. Medtronic plc
- 15.3.4. Johnson & Johnson
- 15.3.5. Siemens Healthineers AG
- 15.3.6. Omnicell, Inc.
- 15.3.7. Accuray Incorporated
- 15.3.8. Hocoma AG (a DIH International Ltd. company)
- 15.3.9. Zimmer Biomet Holdings, Inc.
- 15.3.10. TransEnterix, Inc.
- 15.3.11. Aethon Inc.
- 15.3.12. Diligent Robotics, Inc.
- 15.3.13. Curexo, Inc.
- 15.3.14. Renishaw plc
- 15.3.15. Mazor Robotics Ltd.
- 15.3.16. Titan Medical Inc.
- 15.3.17. Verb Surgical Inc.
- 15.3.18. Auris Health, Inc.
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

