Healthcare Fraud Analytics Market by Components (Services, Software), Analytics Type (Compliance, Detection, Investigation), Applications, End Users, Deployment Mode - Global Forecast 2025-2032
Description
The Healthcare Fraud Analytics Market was valued at USD 8.18 billion in 2024 and is projected to grow to USD 9.85 billion in 2025, with a CAGR of 20.82%, reaching USD 37.16 billion by 2032.
Concise orientation outlining how modern analytics, governance, and cross functional coordination must align to fortify healthcare operations against sophisticated fraud risks
The contemporary healthcare environment confronts an expanding array of fraudulent behaviors that erode trust, increase costs, and compromise patient safety. Advances in digital health, the proliferation of value-based contracting, and the growing complexity of revenue cycles have introduced novel attack surfaces that demand more sophisticated analytic responses. As organizations modernize their data architectures and adopt advanced analytics, they must simultaneously navigate intensified regulatory scrutiny and heightened expectations for data protection and ethical algorithmic use.
Against this backdrop, leaders require a concise orientation that synthesizes technological capability with operational readiness. This overview frames critical considerations for implementing effective fraud analytics across enterprise environments, emphasizing integration with clinical workflows, alignment with compliance programs, and the governance necessary to ensure transparent, defensible outcomes. It sets out the strategic terrain: how analytics can translate heterogeneous data into actionable signals, the organizational adjustments required to operationalize those signals, and the cross-functional coordination needed among compliance, legal, clinical, and IT teams.
In short, this introduction positions fraud analytics not as a point solution but as a core element of resilient healthcare operations. By establishing the conceptual and practical foundation, decision-makers can prioritize investments that accelerate detection, streamline investigation, and preserve revenue integrity while protecting patient care quality and privacy.
How emergent artificial intelligence capabilities, expanded multi source clinical and claims data, and collaborative governance models are redefining detection and investigative effectiveness
The landscape of healthcare fraud analytics is shifting under the combined influence of AI-driven detection, expanded data ecosystems, and evolving legal frameworks. Machine learning and pattern recognition have matured beyond rule-based alerts to enable probabilistic scoring and behavioral baselining, yet they also introduce new considerations for explainability, bias mitigation, and model lifecycle management. Consequently, organizations must adapt procurement and operational models to sustain continuous model validation, version control, and interpretability for auditability.
Concurrently, data sources have broadened to include longitudinal claims, electronic health record extracts, device telemetry, and partner-sourced feeds, which together create richer context for signal generation but also raise interoperability and data quality challenges. As a result, attention has shifted to robust ingestion pipelines, semantic normalization, and the employment of standardized ontologies that permit reliable cross-system correlation. Interoperability investments and strong data governance are now prerequisites for achieving high-fidelity detection and efficient investigations.
Operationally, the role of fraud analytics teams is evolving from back-office rule maintenance to strategic risk management. Teams that blend analytics expertise with clinical and investigative domain knowledge are increasingly successful at converting alerts into prioritized cases and measurable recoveries. Moreover, partnerships between vendors, payers, providers, and regulators are growing in importance for sharing typologies and threat intelligence while protecting privacy and competitive interests. Taken together, these trends create an imperative for adaptive architectures, multidisciplinary teams, and collaborative ecosystems to sustain impact.
Implications of updated trade policies on procurement agility and architectural modularity shaping technology acquisition and deployment decisions across healthcare analytics programs
The imposition of tariffs and trade policy adjustments in 2025 has had a tangible ripple effect on the procurement and deployment of healthcare fraud analytics technologies. Cost pressures on imported hardware components and certain software packages have encouraged organizations to reassess sourcing strategies and to place greater emphasis on total cost of ownership rather than initial licensing fees. These dynamics have accelerated conversations around cloud adoption, open architectures, and the feasibility of localizing critical infrastructure to mitigate exposure to cross-border supply volatility.
In practice, procurement teams are revisiting vendor contracts, negotiating renewed terms that reflect updated cost structures, and requesting greater transparency on software bill of materials and hardware dependencies. This has led to an uptick in demand for modular solutions that enable incremental deployment and easier substitution of components without disrupting core analytic capabilities. At the same time, service providers are responding by offering flexible consumption models and managed services that reduce capital outlays and insulate customers from direct supply chain impacts.
From an implementation perspective, these trade adjustments have reinforced the imperative to decouple analytic workloads from geography-dependent hardware when feasible, to leverage cloud-native resilience patterns, and to prioritize solutions that facilitate rapid failover and data portability. Ultimately, the combined effect of tariffs has been to reorient strategy toward procurement agility, architectural modularity, and vendor accountability, thereby shaping how organizations plan, acquire, and operationalize fraud analytics initiatives.
Comprehensive segmentation insights clarifying how component choices, deployment architectures, user types, analytics modalities, and application focus shape effective fraud detection and response
Detailed segmentation analysis reveals how different dimensions of solution design and user needs drive adoption patterns and operational focus. Based on components, evaluations distinguish between services and software, recognizing that services often accelerate time to value through managed detection and investigation, while software offers tighter control for organizations seeking in-house autonomy. Based on deployment mode, choices among cloud, hybrid, and on premise architectures reflect tradeoffs between scalability, data residency, and integration complexity; cloud environments facilitate elastic compute for large scale analytics, hybrid approaches balance latency and control, and on premise deployments continue to serve environments with stringent sovereignty requirements.
Based on end users, stakeholders range from government agencies and payers to pharmaceutical companies, providers, and third party administrators, each bringing distinct priorities: regulatory compliance and public oversight for agencies, cost containment and network integrity for payers, trial integrity and supply chain protection for pharmaceutical firms, clinical quality alignment for providers, and operational efficiency for third party administrators. Based on analytics type, capabilities span compliance, detection, investigation, prevention, recovery, and risk assessment, requiring a blend of retrospective claims analysis, near real time anomaly detection, and predictive risk scoring to support both programmatic and case level interventions. Based on applications, functional focus areas include billing and coding analytics, claim analytics, network analytics, patient analytics, and provider analytics, which together form a comprehensive view that enables prioritized interventions, targeted audits, and provider education initiatives.
These segmentation lenses underscore that successful deployments are rarely one size fits all; rather, they require deliberate configuration of component mix, deployment model, and analytic emphasis to align with the needs of specific end users and applications. Consequently, stakeholders should evaluate solutions against interoperability, extensibility, and the capacity to operationalize insights within existing compliance and clinical workflows.
How regional regulatory diversity, data protection regimes, and health system architectures influence deployment priorities and cross border intelligence sharing strategies
Regional dynamics materially influence priorities for implementation, governance, and cross border collaboration. In the Americas, emphasis often rests on integrating payer claims analytics with provider networks to address complex provider billing arrangements and to accelerate investigative case management. This region also sees substantial investment in partnerships that enable coordinated enforcement and recoveries while protecting patient data under evolving privacy regimes. In Europe, the Middle East & Africa, regulatory heterogeneity and varied data protection frameworks require adaptable solutions that can be configured for differing consent models, localization requirements, and language contexts, which elevates the importance of modular deployment and strong data governance.
Across the Asia-Pacific region, growth in digital health adoption and the rapid expansion of private and public payer models have increased demand for scalable, cloud-friendly analytics that can accommodate diverse provider landscapes and emerging regulatory expectations. In all regions, cross-border fraud typologies and international networks of abuse create a need for shared threat intelligence and compatible technical standards that permit secure information exchange. Thus, regional strategies must balance global typology sharing with local compliance, fostering interoperability while respecting jurisdictional constraints and cultural nuances in care delivery and reimbursement.
Vendor dynamics revealing how explainability, integrations, managed services, and novel privacy preserving techniques are reshaping competitive differentiation in fraud analytics
The vendor landscape has diversified to include traditional analytics providers, niche specialists focused on discrete typologies, and integrators that couple analytic platforms with managed investigative services. Firms that emphasize explainable models, transparent data lineage, and strong integration frameworks are increasingly preferred by enterprise buyers who must demonstrate defensibility in audit and legal processes. At the same time, smaller vendors offering innovative approaches-such as federated learning for privacy preserving model training or specialized network analytics for organized fraud detection-are attracting attention through targeted proofs of concept and domain specific performance.
Partnerships between technology vendors and experienced investigative teams are emerging as a differentiator, enabling faster case conversion and improved recovery rates. Additionally, consultancy and systems integrator relationships are shaping implementations by aligning analytics investments with process redesign, change management, and compliance program improvements. Buyers are therefore prioritizing vendors that can demonstrate real world deployments, clear implementation roadmaps, and the ability to integrate with electronic health records, billing systems, and case management tooling. This competitive dynamic incentivizes continuous product maturation, stronger professional services offerings, and expanded capability sets focused on end to end detection through recovery.
Actionable strategic measures for leaders to institutionalize governance, data quality, modular technology, and collaborative typology sharing to strengthen fraud defenses
Leaders seeking to strengthen fraud analytics programs should prioritize several strategic actions. First, embed cross functional governance that includes compliance, clinical leadership, data science, and legal counsel to ensure analytic initiatives are transparent, defensible, and aligned with care objectives. Second, invest in data engineering and data quality processes that enable consistent, timely ingestion of claims, clinical, and partner data, because high quality inputs materially improve detection signal to noise and reduce investigator workload. Third, adopt a modular technology strategy that allows incremental capability delivery, facilitates component substitution, and reduces vendor lock in while preserving integration paths to core systems.
Fourth, implement rigorous model governance with documented validation, bias assessments, and explainability measures to support regulatory scrutiny and internal audit. Fifth, explore managed service or hybrid delivery models to accelerate time to value while building internal competencies over time. Sixth, prioritize pilot programs that are tightly scoped, measurable, and designed to produce repeatable playbooks that enable rapid scaling. Finally, cultivate partnerships for typology sharing and collaborative investigations, recognizing that complex, organized fraud schemes often span payer, provider, and jurisdictional boundaries and require coordinated responses that preserve privacy and legal compliance.
Rigorous mixed methods research integrating practitioner interviews, policy review, and iterative expert validation to ground actionable insights and ensure practical relevance
The research approach integrates primary qualitative inquiry with rigorous secondary evidence synthesis to ensure findings are grounded in operational reality and contemporary practice. Primary input was collected through structured interviews and workshops with practitioners from payer, provider, regulatory, and vendor communities to surface implementation challenges, typology evolution, and governance practices. These engagements focused on lived experiences with detection pipelines, investigative workflows, and cross organizational coordination, enabling a nuanced understanding of operational friction points and success factors.
Secondary analysis involved systematic review of public policy documents, industry guidance, technical white papers, and anonymized case studies to corroborate observed patterns and to provide technical context for analytic approaches. Across both streams, emphasis was placed on reproducibility, transparent documentation of assumptions, and ethical considerations for data usage. The methodology also incorporated iterative validation with subject matter experts to refine typologies, test recommended controls, and ensure practical utility for both strategic planning and tactical implementation.
Concluding synthesis emphasizing the interplay of technology, governance, and operational integration as the foundation for resilient fraud detection and investigative programs
Consolidating these insights underscores that effective healthcare fraud analytics is as much an organizational capability as it is a technical solution. Investments in algorithms and platforms deliver value only when accompanied by strong data foundations, clear governance, and cross functional operating models that convert analytic signals into prioritized, actionable cases. The combined pressures of evolving fraud typologies, regulatory scrutiny, and economic forces require adaptable strategies that emphasize modularity, explainability, and collaborative intelligence sharing.
Looking ahead, sustained impact will depend on leaders’ willingness to integrate analytic workflows into broader compliance and clinical processes, to invest in skills and change management, and to pursue partnerships that extend detection coverage without sacrificing privacy or legal defensibility. By aligning technology choices with operational realities and governance requirements, organizations can build resilient programs that protect financial integrity, support patient safety, and adapt to an increasingly complex risk environment.
Note: PDF & Excel + Online Access - 1 Year
Concise orientation outlining how modern analytics, governance, and cross functional coordination must align to fortify healthcare operations against sophisticated fraud risks
The contemporary healthcare environment confronts an expanding array of fraudulent behaviors that erode trust, increase costs, and compromise patient safety. Advances in digital health, the proliferation of value-based contracting, and the growing complexity of revenue cycles have introduced novel attack surfaces that demand more sophisticated analytic responses. As organizations modernize their data architectures and adopt advanced analytics, they must simultaneously navigate intensified regulatory scrutiny and heightened expectations for data protection and ethical algorithmic use.
Against this backdrop, leaders require a concise orientation that synthesizes technological capability with operational readiness. This overview frames critical considerations for implementing effective fraud analytics across enterprise environments, emphasizing integration with clinical workflows, alignment with compliance programs, and the governance necessary to ensure transparent, defensible outcomes. It sets out the strategic terrain: how analytics can translate heterogeneous data into actionable signals, the organizational adjustments required to operationalize those signals, and the cross-functional coordination needed among compliance, legal, clinical, and IT teams.
In short, this introduction positions fraud analytics not as a point solution but as a core element of resilient healthcare operations. By establishing the conceptual and practical foundation, decision-makers can prioritize investments that accelerate detection, streamline investigation, and preserve revenue integrity while protecting patient care quality and privacy.
How emergent artificial intelligence capabilities, expanded multi source clinical and claims data, and collaborative governance models are redefining detection and investigative effectiveness
The landscape of healthcare fraud analytics is shifting under the combined influence of AI-driven detection, expanded data ecosystems, and evolving legal frameworks. Machine learning and pattern recognition have matured beyond rule-based alerts to enable probabilistic scoring and behavioral baselining, yet they also introduce new considerations for explainability, bias mitigation, and model lifecycle management. Consequently, organizations must adapt procurement and operational models to sustain continuous model validation, version control, and interpretability for auditability.
Concurrently, data sources have broadened to include longitudinal claims, electronic health record extracts, device telemetry, and partner-sourced feeds, which together create richer context for signal generation but also raise interoperability and data quality challenges. As a result, attention has shifted to robust ingestion pipelines, semantic normalization, and the employment of standardized ontologies that permit reliable cross-system correlation. Interoperability investments and strong data governance are now prerequisites for achieving high-fidelity detection and efficient investigations.
Operationally, the role of fraud analytics teams is evolving from back-office rule maintenance to strategic risk management. Teams that blend analytics expertise with clinical and investigative domain knowledge are increasingly successful at converting alerts into prioritized cases and measurable recoveries. Moreover, partnerships between vendors, payers, providers, and regulators are growing in importance for sharing typologies and threat intelligence while protecting privacy and competitive interests. Taken together, these trends create an imperative for adaptive architectures, multidisciplinary teams, and collaborative ecosystems to sustain impact.
Implications of updated trade policies on procurement agility and architectural modularity shaping technology acquisition and deployment decisions across healthcare analytics programs
The imposition of tariffs and trade policy adjustments in 2025 has had a tangible ripple effect on the procurement and deployment of healthcare fraud analytics technologies. Cost pressures on imported hardware components and certain software packages have encouraged organizations to reassess sourcing strategies and to place greater emphasis on total cost of ownership rather than initial licensing fees. These dynamics have accelerated conversations around cloud adoption, open architectures, and the feasibility of localizing critical infrastructure to mitigate exposure to cross-border supply volatility.
In practice, procurement teams are revisiting vendor contracts, negotiating renewed terms that reflect updated cost structures, and requesting greater transparency on software bill of materials and hardware dependencies. This has led to an uptick in demand for modular solutions that enable incremental deployment and easier substitution of components without disrupting core analytic capabilities. At the same time, service providers are responding by offering flexible consumption models and managed services that reduce capital outlays and insulate customers from direct supply chain impacts.
From an implementation perspective, these trade adjustments have reinforced the imperative to decouple analytic workloads from geography-dependent hardware when feasible, to leverage cloud-native resilience patterns, and to prioritize solutions that facilitate rapid failover and data portability. Ultimately, the combined effect of tariffs has been to reorient strategy toward procurement agility, architectural modularity, and vendor accountability, thereby shaping how organizations plan, acquire, and operationalize fraud analytics initiatives.
Comprehensive segmentation insights clarifying how component choices, deployment architectures, user types, analytics modalities, and application focus shape effective fraud detection and response
Detailed segmentation analysis reveals how different dimensions of solution design and user needs drive adoption patterns and operational focus. Based on components, evaluations distinguish between services and software, recognizing that services often accelerate time to value through managed detection and investigation, while software offers tighter control for organizations seeking in-house autonomy. Based on deployment mode, choices among cloud, hybrid, and on premise architectures reflect tradeoffs between scalability, data residency, and integration complexity; cloud environments facilitate elastic compute for large scale analytics, hybrid approaches balance latency and control, and on premise deployments continue to serve environments with stringent sovereignty requirements.
Based on end users, stakeholders range from government agencies and payers to pharmaceutical companies, providers, and third party administrators, each bringing distinct priorities: regulatory compliance and public oversight for agencies, cost containment and network integrity for payers, trial integrity and supply chain protection for pharmaceutical firms, clinical quality alignment for providers, and operational efficiency for third party administrators. Based on analytics type, capabilities span compliance, detection, investigation, prevention, recovery, and risk assessment, requiring a blend of retrospective claims analysis, near real time anomaly detection, and predictive risk scoring to support both programmatic and case level interventions. Based on applications, functional focus areas include billing and coding analytics, claim analytics, network analytics, patient analytics, and provider analytics, which together form a comprehensive view that enables prioritized interventions, targeted audits, and provider education initiatives.
These segmentation lenses underscore that successful deployments are rarely one size fits all; rather, they require deliberate configuration of component mix, deployment model, and analytic emphasis to align with the needs of specific end users and applications. Consequently, stakeholders should evaluate solutions against interoperability, extensibility, and the capacity to operationalize insights within existing compliance and clinical workflows.
How regional regulatory diversity, data protection regimes, and health system architectures influence deployment priorities and cross border intelligence sharing strategies
Regional dynamics materially influence priorities for implementation, governance, and cross border collaboration. In the Americas, emphasis often rests on integrating payer claims analytics with provider networks to address complex provider billing arrangements and to accelerate investigative case management. This region also sees substantial investment in partnerships that enable coordinated enforcement and recoveries while protecting patient data under evolving privacy regimes. In Europe, the Middle East & Africa, regulatory heterogeneity and varied data protection frameworks require adaptable solutions that can be configured for differing consent models, localization requirements, and language contexts, which elevates the importance of modular deployment and strong data governance.
Across the Asia-Pacific region, growth in digital health adoption and the rapid expansion of private and public payer models have increased demand for scalable, cloud-friendly analytics that can accommodate diverse provider landscapes and emerging regulatory expectations. In all regions, cross-border fraud typologies and international networks of abuse create a need for shared threat intelligence and compatible technical standards that permit secure information exchange. Thus, regional strategies must balance global typology sharing with local compliance, fostering interoperability while respecting jurisdictional constraints and cultural nuances in care delivery and reimbursement.
Vendor dynamics revealing how explainability, integrations, managed services, and novel privacy preserving techniques are reshaping competitive differentiation in fraud analytics
The vendor landscape has diversified to include traditional analytics providers, niche specialists focused on discrete typologies, and integrators that couple analytic platforms with managed investigative services. Firms that emphasize explainable models, transparent data lineage, and strong integration frameworks are increasingly preferred by enterprise buyers who must demonstrate defensibility in audit and legal processes. At the same time, smaller vendors offering innovative approaches-such as federated learning for privacy preserving model training or specialized network analytics for organized fraud detection-are attracting attention through targeted proofs of concept and domain specific performance.
Partnerships between technology vendors and experienced investigative teams are emerging as a differentiator, enabling faster case conversion and improved recovery rates. Additionally, consultancy and systems integrator relationships are shaping implementations by aligning analytics investments with process redesign, change management, and compliance program improvements. Buyers are therefore prioritizing vendors that can demonstrate real world deployments, clear implementation roadmaps, and the ability to integrate with electronic health records, billing systems, and case management tooling. This competitive dynamic incentivizes continuous product maturation, stronger professional services offerings, and expanded capability sets focused on end to end detection through recovery.
Actionable strategic measures for leaders to institutionalize governance, data quality, modular technology, and collaborative typology sharing to strengthen fraud defenses
Leaders seeking to strengthen fraud analytics programs should prioritize several strategic actions. First, embed cross functional governance that includes compliance, clinical leadership, data science, and legal counsel to ensure analytic initiatives are transparent, defensible, and aligned with care objectives. Second, invest in data engineering and data quality processes that enable consistent, timely ingestion of claims, clinical, and partner data, because high quality inputs materially improve detection signal to noise and reduce investigator workload. Third, adopt a modular technology strategy that allows incremental capability delivery, facilitates component substitution, and reduces vendor lock in while preserving integration paths to core systems.
Fourth, implement rigorous model governance with documented validation, bias assessments, and explainability measures to support regulatory scrutiny and internal audit. Fifth, explore managed service or hybrid delivery models to accelerate time to value while building internal competencies over time. Sixth, prioritize pilot programs that are tightly scoped, measurable, and designed to produce repeatable playbooks that enable rapid scaling. Finally, cultivate partnerships for typology sharing and collaborative investigations, recognizing that complex, organized fraud schemes often span payer, provider, and jurisdictional boundaries and require coordinated responses that preserve privacy and legal compliance.
Rigorous mixed methods research integrating practitioner interviews, policy review, and iterative expert validation to ground actionable insights and ensure practical relevance
The research approach integrates primary qualitative inquiry with rigorous secondary evidence synthesis to ensure findings are grounded in operational reality and contemporary practice. Primary input was collected through structured interviews and workshops with practitioners from payer, provider, regulatory, and vendor communities to surface implementation challenges, typology evolution, and governance practices. These engagements focused on lived experiences with detection pipelines, investigative workflows, and cross organizational coordination, enabling a nuanced understanding of operational friction points and success factors.
Secondary analysis involved systematic review of public policy documents, industry guidance, technical white papers, and anonymized case studies to corroborate observed patterns and to provide technical context for analytic approaches. Across both streams, emphasis was placed on reproducibility, transparent documentation of assumptions, and ethical considerations for data usage. The methodology also incorporated iterative validation with subject matter experts to refine typologies, test recommended controls, and ensure practical utility for both strategic planning and tactical implementation.
Concluding synthesis emphasizing the interplay of technology, governance, and operational integration as the foundation for resilient fraud detection and investigative programs
Consolidating these insights underscores that effective healthcare fraud analytics is as much an organizational capability as it is a technical solution. Investments in algorithms and platforms deliver value only when accompanied by strong data foundations, clear governance, and cross functional operating models that convert analytic signals into prioritized, actionable cases. The combined pressures of evolving fraud typologies, regulatory scrutiny, and economic forces require adaptable strategies that emphasize modularity, explainability, and collaborative intelligence sharing.
Looking ahead, sustained impact will depend on leaders’ willingness to integrate analytic workflows into broader compliance and clinical processes, to invest in skills and change management, and to pursue partnerships that extend detection coverage without sacrificing privacy or legal defensibility. By aligning technology choices with operational realities and governance requirements, organizations can build resilient programs that protect financial integrity, support patient safety, and adapt to an increasingly complex risk environment.
Note: PDF & Excel + Online Access - 1 Year
Table of Contents
194 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Adoption of machine learning algorithms for predictive fraud detection in healthcare claims
- 5.2. Integration of blockchain technology to enhance security and transparency in fraud analytics processes
- 5.3. Real time monitoring of telehealth services to identify anomalous billing patterns and claim inconsistencies
- 5.4. Utilization of natural language processing to detect suspicious provider narratives in clinical documentation systems
- 5.5. Implementation of advanced network analytics to uncover collusion rings among healthcare providers and suppliers
- 5.6. Deployment of cloud based fraud analytics platforms to improve scalability and cross system data integration
- 5.7. Advancement of real time member identity verification measures to reduce synthetic identity fraud incidents
- 5.8. Integration of external social determinant data to enhance risk scoring for potential fraudulent healthcare claims
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. Healthcare Fraud Analytics Market, by Components
- 8.1. Services
- 8.2. Software
- 9. Healthcare Fraud Analytics Market, by Analytics Type
- 9.1. Compliance
- 9.2. Detection
- 9.3. Investigation
- 9.4. Prevention
- 9.5. Recovery
- 9.6. Risk Assessment
- 10. Healthcare Fraud Analytics Market, by Applications
- 10.1. Billing And Coding Analytics
- 10.2. Claim Analytics
- 10.3. Network Analytics
- 10.4. Patient Analytics
- 10.5. Provider Analytics
- 11. Healthcare Fraud Analytics Market, by End Users
- 11.1. Government Agencies
- 11.2. Pharmaceutical Companies
- 11.3. Third Party Administrators
- 12. Healthcare Fraud Analytics Market, by Deployment Mode
- 12.1. Cloud
- 12.2. On Premise
- 13. Healthcare Fraud Analytics Market, by Region
- 13.1. Americas
- 13.1.1. North America
- 13.1.2. Latin America
- 13.2. Europe, Middle East & Africa
- 13.2.1. Europe
- 13.2.2. Middle East
- 13.2.3. Africa
- 13.3. Asia-Pacific
- 14. Healthcare Fraud Analytics Market, by Group
- 14.1. ASEAN
- 14.2. GCC
- 14.3. European Union
- 14.4. BRICS
- 14.5. G7
- 14.6. NATO
- 15. Healthcare Fraud Analytics Market, by Country
- 15.1. United States
- 15.2. Canada
- 15.3. Mexico
- 15.4. Brazil
- 15.5. United Kingdom
- 15.6. Germany
- 15.7. France
- 15.8. Russia
- 15.9. Italy
- 15.10. Spain
- 15.11. China
- 15.12. India
- 15.13. Japan
- 15.14. Australia
- 15.15. South Korea
- 16. Competitive Landscape
- 16.1. Market Share Analysis, 2024
- 16.2. FPNV Positioning Matrix, 2024
- 16.3. Competitive Analysis
- 16.3.1. Change Healthcare LLC
- 16.3.2. Cotiviti, LLC
- 16.3.3. DXC Technology Company
- 16.3.4. Experian Information Solutions, Inc.
- 16.3.5. Fair Isaac Corporation
- 16.3.6. International Business Machines Corporation
- 16.3.7. LexisNexis Risk Solutions Inc.
- 16.3.8. Microsoft Corporation
- 16.3.9. NICE Ltd.
- 16.3.10. NoFraud
- 16.3.11. Optum, Inc.
- 16.3.12. Oracle Corporation
- 16.3.13. Riskified Ltd.
- 16.3.14. Sagitec Solutions
- 16.3.15. SAP SE
- 16.3.16. SAS Institute Inc.
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.


