Crop Scanners Market by Technology (Hyperspectral Imaging, Multispectral Imaging, Thermal Imaging), Platform Type (Benchtop Instruments, Ground Based Systems, Handheld Devices), Application, Offering, End User - Global Forecast 2025-2032
Description
The Crop Scanners Market was valued at USD 971.02 million in 2024 and is projected to grow to USD 1,099.79 million in 2025, with a CAGR of 12.97%, reaching USD 2,577.24 million by 2032.
Comprehensive introduction to crop scanning technologies and their pivotal role in enabling agronomic intelligence and operational decision-making
Crop scanning technologies are reshaping how agronomy is practiced by converting raw spectral and thermal signals into actionable recommendations for growers, advisers, and supply chain partners. Across the value chain, imaging and sensing tools enable earlier detection of physiological stress, more precise input application, and improved traceability, and they increasingly inform automated interventions. As the industry integrates remote and proximal sensing with cloud-based analytics, the practical emphasis is shifting from standalone instruments to interoperable systems that align sensing cadence with decision thresholds.
Transitioning from proof-of-concept field trials to operational deployment requires careful alignment of platform choice, sensing modality, and end-user workflows. Integration challenges remain, particularly where legacy machinery, fragmented data standards, and variability in agronomic practices create friction. Nevertheless, advances in sensor miniaturization, edge compute, and AI-driven pattern recognition are lowering barriers to adoption. In this context, stakeholders must evaluate not only the technical fidelity of hyperspectral, multispectral, and thermal sensors but also data orchestration, user experience, and service models that embed crop scanning insights into repeatable farm management routines.
Transformative shifts in sensing, data orchestration, and go-to-market approaches that are accelerating adoption and redefining competitive dynamics
The landscape for crop scanners is undergoing several interconnected shifts that are redefining competitive advantage and adoption trajectories. First, sensor convergence and computational advances are enabling richer phenotypic interpretation from both aerial and proximal perspectives, which in turn is driving demand for platforms that can harmonize disparate data streams. Second, the cost and form-factor reductions in imaging hardware are widening the addressable use cases, encouraging a move from episodic research deployments to continuous monitoring programs.
At the same time, regulatory developments around unmanned aerial platforms and data privacy are influencing go-to-market strategies, prompting companies to build more resilient compliance and service frameworks. Strategic partnerships between imaging manufacturers, UAV OEMs, and software integrators are accelerating vertical solutions that bundle hardware with analytics and operational workflows. Lastly, end users are demanding demonstrable ROI and simplified user interfaces, which encourages vendors to shift from complex toolkits to outcome-focused services that translate sensor outputs into clear agronomic recommendations and measurable operational improvements.
Cumulative analysis of United States tariff impacts on the crop scanners value chain and the resulting supply chain and procurement adaptations
Recent tariff measures introduced by the United States in 2025 have introduced a new layer of complexity for the global supply chain that supports crop scanning hardware and platform assembly. Increased duties on certain electronic components, imaging modules, and drone subsystems have raised landed costs for imported sensors and UAV parts, creating pressure on manufacturers that rely on internationally distributed production networks. As a result, procurement strategies are adapting: some suppliers are negotiating new sourcing agreements, others are shifting toward regionalized manufacturing, and a subset is accelerating qualification of alternative parts to mitigate single-source exposure.
The cumulative effect of tariff-driven input cost increases is being felt unevenly across the ecosystem. Larger integrators with scale and existing domestic partnerships are better positioned to absorb or hedge added costs, while smaller equipment makers and service providers face tighter margins. For end users, incremental price pressure may slow replacement cycles or prompt a preference for modular, upgradable solutions that avoid full-system replacement. Additionally, tariff-related compliance and documentation burdens are increasing administrative overhead for cross-border shipments. In the medium term, firms that proactively redesign supply chains, localize critical assembly operations, and develop transparent total-cost-of-ownership narratives will be better equipped to navigate the post-tariff landscape and sustain investment in deployment and support.
Key segmentation insights that explain adoption pathways across sensor types, platform modalities, application workflows, and end-user requirements
Insight into market segmentation reveals how differentiated product architectures and end-user requirements shape adoption pathways for crop scanning solutions. Technologies vary by spectral capability and resolution: hyperspectral imaging delivers dense spectral signatures suitable for fine-grained biochemical analysis and research-grade applications, multispectral imaging balances cost and actionable indices for operational monitoring, and thermal imaging supplies complementary information useful for water-stress and canopy temperature assessments. Platform choices likewise determine operational envelope and deployment cadence; benchtop instruments support controlled laboratory analysis, ground based systems enable high-resolution proximal sensing at field scale, handheld devices deliver rapid point assessments for scouts and agronomists, and UAV mounted systems-including both fixed wing UAV and multi rotor UAV configurations-provide flexible aerial coverage that balances endurance and maneuverability.
Applications map to distinct workflows and decision horizons: crop health monitoring and disease detection demand regular, broad-area observation cycles and sensitive spectral detection; nutrient management relies on calibrated indices and integration with soil and yield history; soil analysis benefits from proximal sensors and correlative laboratory validation. Offerings span hardware, services, and software, where hardware elements such as cameras, probes, and spectrometers form the sensing foundation, software layers enable data processing and visualization, and services deliver deployment, analytics interpretation, and agronomic integration. End users-from agribusiness companies and farmers to government agencies and research institutions-prioritize different trade-offs between accuracy, cost, ease of integration, and ongoing support, which drives demand for tailored commercial models and solution bundles.
Regional dynamics and deployment realities that determine how crop scanning solutions are adopted and commercialized across diverse agricultural markets
Regional dynamics shape technology adoption rhythms, regulatory constraints, and commercial models for crop scanning solutions across the globe. In the Americas, there is a strong emphasis on large-scale commercial deployments and integration with precision application equipment, driven by extensive commercial farming operations and an established services market that supports high-frequency aerial monitoring and subscription-based analytics. Contrastingly, Europe, Middle East & Africa exhibits diversified patterns: regulatory regimes and airspace management influence the pace and structure of UAV-based services, while varied farm sizes and heterogeneous cropping systems create demand for both compact handheld solutions and customized service offerings. In Asia-Pacific, rapid modernization of agricultural value chains, coupled with intensifying investment in automation and digital agriculture, is fostering experimentation with sensor-enabled advisory services, public–private pilot programs, and localized manufacturing efforts.
Transitions between research pilots and scalable commercial programs often hinge on regional differences in labor availability, subsidy structures, and digital infrastructure. For instance, regions with robust advisory networks and broadband connectivity find it easier to operationalize cloud-based analytics and remote diagnostic services, while regions with fragmented service ecosystems favor bundled hardware-and-service propositions that minimize the need for in-house technical expertise. Understanding these geographic nuances is essential for tailoring go-to-market approaches, partnership strategies, and pricing frameworks that align with regional regulatory realities and customer sophistication.
Critical company-level insights on differentiation strategies, partnership ecosystems, and value chain plays that define competitive positioning in the crop scanners market
Competitive dynamics among companies operating in the crop scanners ecosystem reflect a balance between hardware excellence, software differentiation, and service delivery capability. Leading equipment manufacturers invest in sensor fidelity, calibration workflows, and ruggedization to meet the varied demands of field environments, while software vendors focus on scalable analytics, data fusion, and user experience to translate raw sensor outputs into operational recommendations. Service-oriented firms and integrators differentiate through agronomic expertise, end-to-end deployment capabilities, and localized support networks that reduce friction for adoption among growers and institutional customers.
Partnerships and ecosystem plays are increasingly central. Companies that pursue open integration strategies and standardized data interfaces can accelerate adoption by enabling third-party analytics and complementary applications. Conversely, vertically integrated players that bundle hardware, software, and advisory services aim to capture more of the value chain by offering turnkey solutions. Mergers, licensing arrangements, and co-development agreements are common mechanisms to access channel relationships, accelerate technology maturation, and expand addressable use cases. Ultimately, competitive advantage accrues to organizations that can demonstrate repeatable agronomic outcomes, maintain high data-quality pipelines, and offer flexible commercial models that meet diverse customer procurement preferences.
Actionable strategic recommendations for industry leaders to align modular product design, resilient supply chains, and outcome-focused commercial models
Industry leaders should prioritize a set of decisive actions that align technology capability with commercial scalability and resilience. First, invest in modular product architectures that allow component upgrades and sensor fusion without requiring full-system replacement, which reduces customer switching friction and extends product lifecycles. Second, strengthen partnerships across the value chain-linking sensor manufacturers, UAV OEMs, software providers, and agronomy consultancies-to create integrated solutions that deliver operational outcomes rather than isolated data streams. Third, diversify supply chains and qualify alternative component suppliers to reduce exposure to tariff-related cost shocks and geopolitical risk, while exploring regional assembly hubs to shorten lead times and improve service responsiveness.
Additionally, companies should develop clear total-cost-of-ownership narratives and pilot-to-scale playbooks that help customers transition from trials to sustained deployment. Emphasize services and training that lower the barriers to on-farm adoption, and consider subscription pricing or outcome-based commercial models that align vendor incentives with agronomic performance. Finally, engage proactively with regulators and industry consortia to shape favorable standards around data interoperability, UAV operations, and certification frameworks, ensuring smoother market access and clearer expectations for end users.
Robust multi-method research methodology combining primary stakeholder engagement, technical validation, and triangulated secondary-source analysis
The research methodology underpinning these insights draws on a multi-method approach that combines primary engagement with industry practitioners and rigorous secondary-source synthesis. Primary research included structured interviews with hardware manufacturers, software vendors, agronomy service providers, and end users to capture real-world deployment experiences, procurement drivers, and operational constraints. These conversations were complemented by technical assessments of sensor capabilities and validation studies where available, enabling a practical understanding of performance trade-offs across hyperspectral, multispectral, and thermal modalities.
Secondary analysis incorporated review of regulatory texts, patent filings, academic literature, industry white papers, and public company disclosures to triangulate technology trajectories and investment patterns. Data were validated through cross-checks with field trials, vendor product specifications, and third-party technical benchmarks. Scenario analysis was applied to stress-test implications of supply chain disruptions, tariff changes, and regulatory shifts, while expert panels provided critical review of assumptions and interpretive findings. Together, these methods ensure that conclusions reflect a balanced synthesis of technical reality, commercial dynamics, and operational constraints.
Conclusive synthesis emphasizing the transition from experimental sensing to operational agronomic tools and the strategic priorities for scaling adoption
In conclusion, crop scanning technologies are transitioning from experimental tools to integral components of modern agronomic practice, enabled by advances in sensing, analytics, and platform integration. However, successful scale-up requires more than technical capability; it requires harmonized data standards, resilient supply chains, practical service models, and regulatory clarity. Firms that combine accurate sensing, user-centered analytics, and dependable field-level support will accelerate adoption and create durable value for customers.
Looking ahead, the interplay between technology innovation and external pressures-such as tariff measures and regional regulatory frameworks-will continue to shape strategic choices. Market participants that proactively adapt through supply chain diversification, modular product strategies, and partnership-driven solutions will be best positioned to turn sensing capability into tangible agronomic outcomes. Ultimately, the winners will be those who translate complex spectral and thermal data into simple, repeatable actions that improve productivity, resource efficiency, and sustainability across diverse farming contexts.
Note: PDF & Excel + Online Access - 1 Year
Comprehensive introduction to crop scanning technologies and their pivotal role in enabling agronomic intelligence and operational decision-making
Crop scanning technologies are reshaping how agronomy is practiced by converting raw spectral and thermal signals into actionable recommendations for growers, advisers, and supply chain partners. Across the value chain, imaging and sensing tools enable earlier detection of physiological stress, more precise input application, and improved traceability, and they increasingly inform automated interventions. As the industry integrates remote and proximal sensing with cloud-based analytics, the practical emphasis is shifting from standalone instruments to interoperable systems that align sensing cadence with decision thresholds.
Transitioning from proof-of-concept field trials to operational deployment requires careful alignment of platform choice, sensing modality, and end-user workflows. Integration challenges remain, particularly where legacy machinery, fragmented data standards, and variability in agronomic practices create friction. Nevertheless, advances in sensor miniaturization, edge compute, and AI-driven pattern recognition are lowering barriers to adoption. In this context, stakeholders must evaluate not only the technical fidelity of hyperspectral, multispectral, and thermal sensors but also data orchestration, user experience, and service models that embed crop scanning insights into repeatable farm management routines.
Transformative shifts in sensing, data orchestration, and go-to-market approaches that are accelerating adoption and redefining competitive dynamics
The landscape for crop scanners is undergoing several interconnected shifts that are redefining competitive advantage and adoption trajectories. First, sensor convergence and computational advances are enabling richer phenotypic interpretation from both aerial and proximal perspectives, which in turn is driving demand for platforms that can harmonize disparate data streams. Second, the cost and form-factor reductions in imaging hardware are widening the addressable use cases, encouraging a move from episodic research deployments to continuous monitoring programs.
At the same time, regulatory developments around unmanned aerial platforms and data privacy are influencing go-to-market strategies, prompting companies to build more resilient compliance and service frameworks. Strategic partnerships between imaging manufacturers, UAV OEMs, and software integrators are accelerating vertical solutions that bundle hardware with analytics and operational workflows. Lastly, end users are demanding demonstrable ROI and simplified user interfaces, which encourages vendors to shift from complex toolkits to outcome-focused services that translate sensor outputs into clear agronomic recommendations and measurable operational improvements.
Cumulative analysis of United States tariff impacts on the crop scanners value chain and the resulting supply chain and procurement adaptations
Recent tariff measures introduced by the United States in 2025 have introduced a new layer of complexity for the global supply chain that supports crop scanning hardware and platform assembly. Increased duties on certain electronic components, imaging modules, and drone subsystems have raised landed costs for imported sensors and UAV parts, creating pressure on manufacturers that rely on internationally distributed production networks. As a result, procurement strategies are adapting: some suppliers are negotiating new sourcing agreements, others are shifting toward regionalized manufacturing, and a subset is accelerating qualification of alternative parts to mitigate single-source exposure.
The cumulative effect of tariff-driven input cost increases is being felt unevenly across the ecosystem. Larger integrators with scale and existing domestic partnerships are better positioned to absorb or hedge added costs, while smaller equipment makers and service providers face tighter margins. For end users, incremental price pressure may slow replacement cycles or prompt a preference for modular, upgradable solutions that avoid full-system replacement. Additionally, tariff-related compliance and documentation burdens are increasing administrative overhead for cross-border shipments. In the medium term, firms that proactively redesign supply chains, localize critical assembly operations, and develop transparent total-cost-of-ownership narratives will be better equipped to navigate the post-tariff landscape and sustain investment in deployment and support.
Key segmentation insights that explain adoption pathways across sensor types, platform modalities, application workflows, and end-user requirements
Insight into market segmentation reveals how differentiated product architectures and end-user requirements shape adoption pathways for crop scanning solutions. Technologies vary by spectral capability and resolution: hyperspectral imaging delivers dense spectral signatures suitable for fine-grained biochemical analysis and research-grade applications, multispectral imaging balances cost and actionable indices for operational monitoring, and thermal imaging supplies complementary information useful for water-stress and canopy temperature assessments. Platform choices likewise determine operational envelope and deployment cadence; benchtop instruments support controlled laboratory analysis, ground based systems enable high-resolution proximal sensing at field scale, handheld devices deliver rapid point assessments for scouts and agronomists, and UAV mounted systems-including both fixed wing UAV and multi rotor UAV configurations-provide flexible aerial coverage that balances endurance and maneuverability.
Applications map to distinct workflows and decision horizons: crop health monitoring and disease detection demand regular, broad-area observation cycles and sensitive spectral detection; nutrient management relies on calibrated indices and integration with soil and yield history; soil analysis benefits from proximal sensors and correlative laboratory validation. Offerings span hardware, services, and software, where hardware elements such as cameras, probes, and spectrometers form the sensing foundation, software layers enable data processing and visualization, and services deliver deployment, analytics interpretation, and agronomic integration. End users-from agribusiness companies and farmers to government agencies and research institutions-prioritize different trade-offs between accuracy, cost, ease of integration, and ongoing support, which drives demand for tailored commercial models and solution bundles.
Regional dynamics and deployment realities that determine how crop scanning solutions are adopted and commercialized across diverse agricultural markets
Regional dynamics shape technology adoption rhythms, regulatory constraints, and commercial models for crop scanning solutions across the globe. In the Americas, there is a strong emphasis on large-scale commercial deployments and integration with precision application equipment, driven by extensive commercial farming operations and an established services market that supports high-frequency aerial monitoring and subscription-based analytics. Contrastingly, Europe, Middle East & Africa exhibits diversified patterns: regulatory regimes and airspace management influence the pace and structure of UAV-based services, while varied farm sizes and heterogeneous cropping systems create demand for both compact handheld solutions and customized service offerings. In Asia-Pacific, rapid modernization of agricultural value chains, coupled with intensifying investment in automation and digital agriculture, is fostering experimentation with sensor-enabled advisory services, public–private pilot programs, and localized manufacturing efforts.
Transitions between research pilots and scalable commercial programs often hinge on regional differences in labor availability, subsidy structures, and digital infrastructure. For instance, regions with robust advisory networks and broadband connectivity find it easier to operationalize cloud-based analytics and remote diagnostic services, while regions with fragmented service ecosystems favor bundled hardware-and-service propositions that minimize the need for in-house technical expertise. Understanding these geographic nuances is essential for tailoring go-to-market approaches, partnership strategies, and pricing frameworks that align with regional regulatory realities and customer sophistication.
Critical company-level insights on differentiation strategies, partnership ecosystems, and value chain plays that define competitive positioning in the crop scanners market
Competitive dynamics among companies operating in the crop scanners ecosystem reflect a balance between hardware excellence, software differentiation, and service delivery capability. Leading equipment manufacturers invest in sensor fidelity, calibration workflows, and ruggedization to meet the varied demands of field environments, while software vendors focus on scalable analytics, data fusion, and user experience to translate raw sensor outputs into operational recommendations. Service-oriented firms and integrators differentiate through agronomic expertise, end-to-end deployment capabilities, and localized support networks that reduce friction for adoption among growers and institutional customers.
Partnerships and ecosystem plays are increasingly central. Companies that pursue open integration strategies and standardized data interfaces can accelerate adoption by enabling third-party analytics and complementary applications. Conversely, vertically integrated players that bundle hardware, software, and advisory services aim to capture more of the value chain by offering turnkey solutions. Mergers, licensing arrangements, and co-development agreements are common mechanisms to access channel relationships, accelerate technology maturation, and expand addressable use cases. Ultimately, competitive advantage accrues to organizations that can demonstrate repeatable agronomic outcomes, maintain high data-quality pipelines, and offer flexible commercial models that meet diverse customer procurement preferences.
Actionable strategic recommendations for industry leaders to align modular product design, resilient supply chains, and outcome-focused commercial models
Industry leaders should prioritize a set of decisive actions that align technology capability with commercial scalability and resilience. First, invest in modular product architectures that allow component upgrades and sensor fusion without requiring full-system replacement, which reduces customer switching friction and extends product lifecycles. Second, strengthen partnerships across the value chain-linking sensor manufacturers, UAV OEMs, software providers, and agronomy consultancies-to create integrated solutions that deliver operational outcomes rather than isolated data streams. Third, diversify supply chains and qualify alternative component suppliers to reduce exposure to tariff-related cost shocks and geopolitical risk, while exploring regional assembly hubs to shorten lead times and improve service responsiveness.
Additionally, companies should develop clear total-cost-of-ownership narratives and pilot-to-scale playbooks that help customers transition from trials to sustained deployment. Emphasize services and training that lower the barriers to on-farm adoption, and consider subscription pricing or outcome-based commercial models that align vendor incentives with agronomic performance. Finally, engage proactively with regulators and industry consortia to shape favorable standards around data interoperability, UAV operations, and certification frameworks, ensuring smoother market access and clearer expectations for end users.
Robust multi-method research methodology combining primary stakeholder engagement, technical validation, and triangulated secondary-source analysis
The research methodology underpinning these insights draws on a multi-method approach that combines primary engagement with industry practitioners and rigorous secondary-source synthesis. Primary research included structured interviews with hardware manufacturers, software vendors, agronomy service providers, and end users to capture real-world deployment experiences, procurement drivers, and operational constraints. These conversations were complemented by technical assessments of sensor capabilities and validation studies where available, enabling a practical understanding of performance trade-offs across hyperspectral, multispectral, and thermal modalities.
Secondary analysis incorporated review of regulatory texts, patent filings, academic literature, industry white papers, and public company disclosures to triangulate technology trajectories and investment patterns. Data were validated through cross-checks with field trials, vendor product specifications, and third-party technical benchmarks. Scenario analysis was applied to stress-test implications of supply chain disruptions, tariff changes, and regulatory shifts, while expert panels provided critical review of assumptions and interpretive findings. Together, these methods ensure that conclusions reflect a balanced synthesis of technical reality, commercial dynamics, and operational constraints.
Conclusive synthesis emphasizing the transition from experimental sensing to operational agronomic tools and the strategic priorities for scaling adoption
In conclusion, crop scanning technologies are transitioning from experimental tools to integral components of modern agronomic practice, enabled by advances in sensing, analytics, and platform integration. However, successful scale-up requires more than technical capability; it requires harmonized data standards, resilient supply chains, practical service models, and regulatory clarity. Firms that combine accurate sensing, user-centered analytics, and dependable field-level support will accelerate adoption and create durable value for customers.
Looking ahead, the interplay between technology innovation and external pressures-such as tariff measures and regional regulatory frameworks-will continue to shape strategic choices. Market participants that proactively adapt through supply chain diversification, modular product strategies, and partnership-driven solutions will be best positioned to turn sensing capability into tangible agronomic outcomes. Ultimately, the winners will be those who translate complex spectral and thermal data into simple, repeatable actions that improve productivity, resource efficiency, and sustainability across diverse farming contexts.
Note: PDF & Excel + Online Access - 1 Year
Table of Contents
185 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Integration of hyperspectral imaging and machine learning for precise crop health assessment
- 5.2. Deployment of drone-based multispectral sensors enabling real-time soil moisture mapping and analysis
- 5.3. Adoption of Internet of Things connectivity for cloud-based data aggregation and remote crop monitoring
- 5.4. Development of portable near-infrared scanners for in-field nutrient deficiency detection and yield prediction
- 5.5. Use of AI-driven predictive analytics to forecast pest infestations and optimize pesticide application timing
- 5.6. Emergence of blockchain-enabled traceability solutions linking crop scanner data with supply chain transparency
- 5.7. Advancement in low-cost sensor technologies facilitating widespread smallholder farmer access to precision agriculture tools
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. Crop Scanners Market, by Technology
- 8.1. Hyperspectral Imaging
- 8.2. Multispectral Imaging
- 8.3. Thermal Imaging
- 9. Crop Scanners Market, by Platform Type
- 9.1. Benchtop Instruments
- 9.2. Ground Based Systems
- 9.3. Handheld Devices
- 9.4. UAV Mounted Systems
- 9.4.1. Fixed Wing UAV
- 9.4.2. Multi Rotor UAV
- 10. Crop Scanners Market, by Application
- 10.1. Crop Health Monitoring
- 10.2. Disease Detection
- 10.3. Nutrient Management
- 10.4. Soil Analysis
- 11. Crop Scanners Market, by Offering
- 11.1. Hardware
- 11.1.1. Cameras
- 11.1.2. Probes
- 11.1.3. Spectrometers
- 11.2. Services
- 11.3. Software
- 12. Crop Scanners Market, by End User
- 12.1. Agribusiness Companies
- 12.2. Farmers
- 12.3. Government Agencies
- 12.4. Research Institutions
- 13. Crop Scanners Market, by Region
- 13.1. Americas
- 13.1.1. North America
- 13.1.2. Latin America
- 13.2. Europe, Middle East & Africa
- 13.2.1. Europe
- 13.2.2. Middle East
- 13.2.3. Africa
- 13.3. Asia-Pacific
- 14. Crop Scanners Market, by Group
- 14.1. ASEAN
- 14.2. GCC
- 14.3. European Union
- 14.4. BRICS
- 14.5. G7
- 14.6. NATO
- 15. Crop Scanners Market, by Country
- 15.1. United States
- 15.2. Canada
- 15.3. Mexico
- 15.4. Brazil
- 15.5. United Kingdom
- 15.6. Germany
- 15.7. France
- 15.8. Russia
- 15.9. Italy
- 15.10. Spain
- 15.11. China
- 15.12. India
- 15.13. Japan
- 15.14. Australia
- 15.15. South Korea
- 16. Competitive Landscape
- 16.1. Market Share Analysis, 2024
- 16.2. FPNV Positioning Matrix, 2024
- 16.3. Competitive Analysis
- 16.3.1. Ag Leader Technology, Inc.
- 16.3.2. Agremo d.o.o.
- 16.3.3. Arable Labs, Inc.
- 16.3.4. Canon U.S.A., Inc.
- 16.3.5. Cropin Technology Solutions Private Limited
- 16.3.6. Cropler Sp. z o.o.
- 16.3.7. CropX Technologies Ltd.
- 16.3.8. Deere & Company
- 16.3.9. EOS Data Analytics, Inc.
- 16.3.10. Fasal – Wolkus Technology Solutions Private Limited
- 16.3.11. GeoPard Agriculture GmbH
- 16.3.12. Monnit Corporation
- 16.3.13. Next Big Technology Web Development Private Limited
- 16.3.14. Planet Labs PBC
- 16.3.15. Taranis Visual Ltd.
- 16.3.16. The Climate Corporation
- 16.3.17. Topcon Corporation
- 16.3.18. Trimble Inc.
- 16.3.19. World from Space s.r.o.
- 16.3.20. Yara International ASA
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

