Connected Agriculture Market by Component (Services, Solutions), Module (Application Enablement, Connectivity Management, Device Management), Deployment, Application, End User - Global Forecast 2025-2032
Description
The Connected Agriculture Market was valued at USD 5.47 billion in 2024 and is projected to grow to USD 6.32 billion in 2025, with a CAGR of 16.64%, reaching USD 18.76 billion by 2032.
An authoritative orientation to connected agriculture that frames technological convergence, ecosystem incentives, and decision priorities for executives and practitioners
Connected agriculture is rapidly redefining how food, fiber, and feed are produced, monitored, and distributed by bringing digital precision to every stage of the farm lifecycle. This introduction situates the contemporary landscape by emphasizing the convergence of sensor networks, machine intelligence, and cloud-native analytics that collectively enable higher productivity, improved resource efficiency, and enhanced traceability across value chains. Stakeholders from equipment manufacturers to research institutions are increasingly aligning around interoperable data frameworks and standardized telemetry to unlock cross-platform insights and facilitate decision automation.
As capital flows into platforms that promise reduced input waste, better yields, and robust risk management, the ecosystem architecture is shifting away from siloed point solutions toward modular stacks that support rapid scaling. This shift is catalyzed by advances in connectivity protocols, edge compute capabilities, and pragmatic business models such as outcome-based services and equipment-as-a-service. Regulatory scrutiny and growing consumer demand for provenance and sustainability metrics further intensify the pressure on participants to integrate digital records into core operations.
Moreover, the introduction reviews the roles of services and solutions in bridging technology adoption gaps, the importance of platform-level module capabilities such as application enablement and device management, and the implications of deployment choices between cloud-delivered and on-premises systems. The introduction concludes by framing the report’s analytical approach: to translate technological promise into operational priorities for farmers, government agencies, and research institutions.
How integration, service-centric business models, and edge-enabled autonomy are reshaping adoption pathways and competitive advantage in connected agriculture
The connected agriculture landscape is undergoing transformative shifts driven by several interlocking dynamics that are reshaping investment priorities and business models. First, the transition from isolated sensors to integrated platform architectures elevates the importance of end-to-end data governance and interoperability, prompting organizations to rethink supplier relationships and integration roadmaps. This progression favors providers that can demonstrate seamless device management, robust connectivity management, and flexible application enablement, while also meeting stringent data privacy and sovereignty expectations.
Second, the economic calculus of agriculture is shifting toward service-oriented contracting where managed services and professional support play an outsized role in enabling technology adoption among smaller operators. As a result, firms that combine consulting services, training and education, and responsive support and maintenance gain a differentiated advantage by lowering adoption friction. Simultaneously, solutions that address high-value use cases-such as precision irrigation, crop monitoring, and livestock health surveillance-are being prioritized because they deliver near-term ROI and measurable sustainability benefits.
Third, edge computing and real-time telemetry are enabling more autonomy at the point of operation, allowing machinery management, greenhouse automation, and weather and soil monitoring systems to act on localized intelligence without constant cloud dependency. These capabilities change deployment trade-offs and introduce new value propositions for hybrid cloud and on-premises architectures. Transition pathways are further influenced by regulatory reforms, financing mechanisms for digital infrastructure, and the maturation of agricultural data marketplaces that promise to unlock secondary revenue streams for producers.
Understanding the ripple effects of United States tariff measures in 2025 on procurement, supplier strategies, and technology adoption dynamics within agricultural ecosystems
The policy environment created by tariff measures announced or implemented in the United States in 2025 is influencing connected agriculture through a cascade of supply-chain, investment, and partner-selection effects. Elevated tariffs on select agricultural equipment and components have raised sourcing costs for specialized sensors, precision machinery subassemblies, and network hardware, encouraging buyers to reassess supplier footprints and to accelerate nearshoring or regional sourcing strategies. In turn, this has amplified interest in alternative procurement models such as managed services and equipment leasing that can mitigate capital expenditure spikes while preserving access to advanced capabilities.
Tariff-driven cost pressures are also reshaping the competitive landscape for solution providers. Vendors with vertically integrated manufacturing or regional assembly centers find themselves better positioned to preserve margin and offer stable pricing. Conversely, smaller innovators that rely on global component markets face compression of their go-to-market windows unless they secure strategic partnerships or localized supply agreements. The tariffs are prompting a reallocation of R&D spending, with an increased emphasis on designing systems that tolerate component substitutions and on diversifying hardware dependencies through modular architectures.
Beyond direct hardware implications, tariffs affect cross-border collaboration in research and development, as duty differentials change the economics of shared testing and validation programs. Policy uncertainty around trade measures encourages agricultural actors to hedge by adopting interoperable software layers and by investing in training and managed services that reduce dependency on imported specialist technicians. Collectively, these adjustments underscore how trade policy intersects with technology adoption, influencing both short-term operational choices and longer-term strategic positioning in the global connected agriculture ecosystem.
Granular segmentation insights that connect component-level services, modular capabilities, deployment trade-offs, application lifecycle priorities, and end-user motivations to adoption outcomes
Segment-level dynamics reveal distinct adoption patterns and value pathways across components, modules, deployment modes, application domains, and end users. When examining the component axis, the services environment-encompassing consulting services, managed services, professional services, support and maintenance, and training and education-emerges as a critical enabler for adoption among cash-constrained farmers and institutional operators. These service offerings lower operational complexity and unlock the benefits of sophisticated solutions such as crop monitoring, farming machinery management, greenhouse automation, irrigation management, livestock monitoring, and weather and soil monitoring by addressing integration, calibration, and change-management needs.
Turning to module-oriented segmentation, capabilities for application enablement, connectivity management, and device management determine the extensibility of platforms and the ease with which new sensors or algorithms can be introduced. Platforms that prioritize device lifecycle management and resilient connectivity yield lower total cost of ownership and faster time-to-value for pilots. Deployment considerations between cloud and on-premises infrastructures further shape adoption choices. Cloud deployments favor scalability, centralized analytics, and continuous feature delivery, while on-premises deployments appeal to operators with strict latency, security, or data sovereignty requirements.
Across application segments, distinctions between pre-production planning and management, in-production planning and management, and post-production planning and management guide solution design and commercial models. Pre-production work focuses on soil conditioning, variety selection, and resource allocation; in-production capabilities concentrate on real-time monitoring and actuation; and post-production systems emphasize traceability, grading, and logistics optimization. Finally, end-user segmentation that includes farmers, government agencies, and research institutions highlights divergent purchasing rationales: farmers seek operational efficiency and risk mitigation, government agencies prioritize compliance and food security goals, and research institutions require extensible platforms for experimentation and longitudinal studies.
Regional adoption contrasts and market drivers that explain how Americas, Europe, Middle East & Africa, and Asia-Pacific are shaping different connected agriculture pathways
Regional variations in adoption and competitive dynamics are pronounced and influence strategic positioning for vendors, integrators, and policy makers. In the Americas, adoption is driven by a mix of large-scale commercial agriculture and progressive service ecosystems that favor managed services and precision machinery management; the presence of mature venture and corporate investment channels accelerates commercialization of innovative solutions and channel partnerships. Conversely, in Europe, Middle East & Africa, regulatory emphasis on sustainability metrics and traceability catalyzes demand for greenhouse automation, irrigation management, and weather and soil monitoring solutions that can document environmental performance and support compliance.
In Asia-Pacific, the diversity of farm sizes and climatic conditions creates a fertile environment for both low-cost sensor networks and advanced greenhouse automation, with strong interest from research institutions and public agencies in piloting scalable models. Cross-region data flows and multinational OEM strategies reflect these geographical nuances, and vendors increasingly tailor deployment and pricing strategies to local infrastructure realities and policy objectives. Moreover, regional financing mechanisms, workforce skills, and distribution networks shape the pace at which pilots can transition to large-scale rollouts, influencing where early commercial returns are realized and how ecosystem partnerships evolve across borders.
Competitive landscape analysis revealing how platform extensibility, vertical integration, and outcome-focused service models determine resilience and growth potential
Competitive dynamics in the connected agriculture landscape are characterized by diverse capabilities across solution developers, service providers, and technology integrators. Leading players are differentiating through platform extensibility, vertical integration of hardware and software, and comprehensive service portfolios that include consulting, deployment, and ongoing support. The most resilient companies combine domain expertise in agronomy with strong systems engineering capabilities, enabling them to tailor crop monitoring, irrigation, and livestock solutions to heterogeneous operating environments while maintaining high standards of reliability and interoperability.
Partnership strategies are central to competitive positioning, with firms forming alliances across cloud providers, equipment OEMs, and research organizations to accelerate time-to-market and to expand addressable use cases. Companies that invest in robust device management frameworks and connectivity resilience reduce customer churn by minimizing downtime and simplifying maintenance. Meanwhile, vendors that emphasize outcomes-based contracting and performance guarantees are gaining traction with large-scale operators seeking predictable returns. This competitive landscape is dynamic; incumbents must continuously refine integration capabilities and service delivery models to maintain relevance as new entrants introduce niche innovations and as regional players scale.
Practical and immediate recommendations for leaders to build resilient supply chains, service-led adoption strategies, and interoperable platform ecosystems for agriculture
Industry leaders should adopt a pragmatic combination of technological rigor and commercial adaptability to capitalize on connected agriculture opportunities. Begin by prioritizing modular architectures that allow substitution of components and mitigate supply-chain disruptions, thereby enabling rapid reconfiguration when tariff policies or component shortages arise. Simultaneously, invest in service capabilities-consulting, professional services, training, and managed operations-to reduce friction for adopters and to create recurring revenue streams that stabilize growth during market volatility.
Leaders should also pursue regional manufacturing and assembly partnerships to shorten lead times and to align cost structures with local demand realities. This approach should be combined with a differentiated deployment strategy that offers both cloud and on-premises options, allowing customers to choose architectures that match latency, sovereignty, and operational constraints. From a go-to-market perspective, emphasize use cases with clear operational or sustainability ROI such as precision irrigation and livestock health monitoring, and design flexible commercial terms that lower the barrier to trial.
Finally, commit resources to data governance and interoperability initiatives that enable cross-vendor compatibility and build trust with farmers and regulators. Develop measurable pilot metrics and knowledge-transfer programs to accelerate adoption at scale, and embed mechanisms for continuous feedback from end users-farmers, government agencies, and research institutions-to iterate product roadmaps quickly and to maintain alignment with evolving on-farm priorities.
A transparent, mixed-methods research approach combining field validation, stakeholder interviews, and rigorous triangulation to produce actionable and defensible insights
The research methodology underpinning this analysis combined a multi-tiered approach to ensure rigor, representativeness, and practical relevance. Primary research included structured interviews with a cross-section of ecosystem participants-technology vendors, farm operators, public-sector representatives, and academic researchers-supplemented by field visits and pilot-site observations to validate real-world performance of sensors, connectivity solutions, and automation systems. These engagements were designed to capture operational pain points, procurement rationales, and the effectiveness of training and support models.
Secondary research encompassed an extensive review of technical literature, regulatory documents, and publicly available standards to map interoperability challenges and to assess the evolution of device and network protocols. Data synthesis prioritized triangulation: insights from interviews were corroborated against deployment case studies and technical performance reports to reduce bias and to highlight recurring themes. Throughout the process, quality controls such as respondent validation, methodological transparency, and iterative peer review were applied to ensure findings are robust and actionable.
Analytical techniques included scenario analysis to explore the implications of trade policy changes and sensitivity testing to understand how variations in deployment choices affect operational outcomes. The methodology emphasizes traceability of assumptions and provides auditors with a clear lineage from raw inputs to final conclusions, facilitating confident decision-making by commercial and public stakeholders.
An integrative conclusion emphasizing service-led execution, supply-chain resilience, and tailored regional strategies as determinants of success in connected agriculture
This concluding synthesis underscores that connected agriculture is more than a collection of point technologies; it is an ecosystem transformation that requires coordinated investment in platforms, services, and institutional capacity. The most consequential drivers of adoption are not merely sensor accuracy or analytics sophistication, but the ability to deliver reliable operational outcomes through strong service models, flexible deployment architectures, and resilient supply chains. Policymakers, vendors, and end users alike must align around interoperability standards, workforce development, and finance mechanisms that lower barriers to scaling successful pilots.
Trade policies and tariff actions in 2025 have illuminated the vulnerability of globalized supply chains and accelerated strategic responses such as regionalization of manufacturing and increased emphasis on modular hardware design. These shifts favor organizations that can adapt procurement strategies quickly and that maintain diversified supplier relationships. At the same time, regional market characteristics-from the capital intensity in the Americas to sustainability-driven demand in Europe, Middle East & Africa, and the diverse needs of Asia-Pacific-require tailored approaches rather than one-size-fits-all solutions.
Looking ahead, stakeholders who invest in robust device management, resilient connectivity, and immersive training programs will unlock the greatest value. By prioritizing outcome-oriented solutions and embedding continuous feedback loops between farmers, governments, and researchers, the sector can scale technologies that drive productivity while meeting environmental and traceability expectations. The conclusion affirms that pragmatic, service-led execution combined with strategic supply-chain management will determine who captures leadership in the evolving connected agriculture landscape.
Please Note: PDF & Excel + Online Access - 1 Year
An authoritative orientation to connected agriculture that frames technological convergence, ecosystem incentives, and decision priorities for executives and practitioners
Connected agriculture is rapidly redefining how food, fiber, and feed are produced, monitored, and distributed by bringing digital precision to every stage of the farm lifecycle. This introduction situates the contemporary landscape by emphasizing the convergence of sensor networks, machine intelligence, and cloud-native analytics that collectively enable higher productivity, improved resource efficiency, and enhanced traceability across value chains. Stakeholders from equipment manufacturers to research institutions are increasingly aligning around interoperable data frameworks and standardized telemetry to unlock cross-platform insights and facilitate decision automation.
As capital flows into platforms that promise reduced input waste, better yields, and robust risk management, the ecosystem architecture is shifting away from siloed point solutions toward modular stacks that support rapid scaling. This shift is catalyzed by advances in connectivity protocols, edge compute capabilities, and pragmatic business models such as outcome-based services and equipment-as-a-service. Regulatory scrutiny and growing consumer demand for provenance and sustainability metrics further intensify the pressure on participants to integrate digital records into core operations.
Moreover, the introduction reviews the roles of services and solutions in bridging technology adoption gaps, the importance of platform-level module capabilities such as application enablement and device management, and the implications of deployment choices between cloud-delivered and on-premises systems. The introduction concludes by framing the report’s analytical approach: to translate technological promise into operational priorities for farmers, government agencies, and research institutions.
How integration, service-centric business models, and edge-enabled autonomy are reshaping adoption pathways and competitive advantage in connected agriculture
The connected agriculture landscape is undergoing transformative shifts driven by several interlocking dynamics that are reshaping investment priorities and business models. First, the transition from isolated sensors to integrated platform architectures elevates the importance of end-to-end data governance and interoperability, prompting organizations to rethink supplier relationships and integration roadmaps. This progression favors providers that can demonstrate seamless device management, robust connectivity management, and flexible application enablement, while also meeting stringent data privacy and sovereignty expectations.
Second, the economic calculus of agriculture is shifting toward service-oriented contracting where managed services and professional support play an outsized role in enabling technology adoption among smaller operators. As a result, firms that combine consulting services, training and education, and responsive support and maintenance gain a differentiated advantage by lowering adoption friction. Simultaneously, solutions that address high-value use cases-such as precision irrigation, crop monitoring, and livestock health surveillance-are being prioritized because they deliver near-term ROI and measurable sustainability benefits.
Third, edge computing and real-time telemetry are enabling more autonomy at the point of operation, allowing machinery management, greenhouse automation, and weather and soil monitoring systems to act on localized intelligence without constant cloud dependency. These capabilities change deployment trade-offs and introduce new value propositions for hybrid cloud and on-premises architectures. Transition pathways are further influenced by regulatory reforms, financing mechanisms for digital infrastructure, and the maturation of agricultural data marketplaces that promise to unlock secondary revenue streams for producers.
Understanding the ripple effects of United States tariff measures in 2025 on procurement, supplier strategies, and technology adoption dynamics within agricultural ecosystems
The policy environment created by tariff measures announced or implemented in the United States in 2025 is influencing connected agriculture through a cascade of supply-chain, investment, and partner-selection effects. Elevated tariffs on select agricultural equipment and components have raised sourcing costs for specialized sensors, precision machinery subassemblies, and network hardware, encouraging buyers to reassess supplier footprints and to accelerate nearshoring or regional sourcing strategies. In turn, this has amplified interest in alternative procurement models such as managed services and equipment leasing that can mitigate capital expenditure spikes while preserving access to advanced capabilities.
Tariff-driven cost pressures are also reshaping the competitive landscape for solution providers. Vendors with vertically integrated manufacturing or regional assembly centers find themselves better positioned to preserve margin and offer stable pricing. Conversely, smaller innovators that rely on global component markets face compression of their go-to-market windows unless they secure strategic partnerships or localized supply agreements. The tariffs are prompting a reallocation of R&D spending, with an increased emphasis on designing systems that tolerate component substitutions and on diversifying hardware dependencies through modular architectures.
Beyond direct hardware implications, tariffs affect cross-border collaboration in research and development, as duty differentials change the economics of shared testing and validation programs. Policy uncertainty around trade measures encourages agricultural actors to hedge by adopting interoperable software layers and by investing in training and managed services that reduce dependency on imported specialist technicians. Collectively, these adjustments underscore how trade policy intersects with technology adoption, influencing both short-term operational choices and longer-term strategic positioning in the global connected agriculture ecosystem.
Granular segmentation insights that connect component-level services, modular capabilities, deployment trade-offs, application lifecycle priorities, and end-user motivations to adoption outcomes
Segment-level dynamics reveal distinct adoption patterns and value pathways across components, modules, deployment modes, application domains, and end users. When examining the component axis, the services environment-encompassing consulting services, managed services, professional services, support and maintenance, and training and education-emerges as a critical enabler for adoption among cash-constrained farmers and institutional operators. These service offerings lower operational complexity and unlock the benefits of sophisticated solutions such as crop monitoring, farming machinery management, greenhouse automation, irrigation management, livestock monitoring, and weather and soil monitoring by addressing integration, calibration, and change-management needs.
Turning to module-oriented segmentation, capabilities for application enablement, connectivity management, and device management determine the extensibility of platforms and the ease with which new sensors or algorithms can be introduced. Platforms that prioritize device lifecycle management and resilient connectivity yield lower total cost of ownership and faster time-to-value for pilots. Deployment considerations between cloud and on-premises infrastructures further shape adoption choices. Cloud deployments favor scalability, centralized analytics, and continuous feature delivery, while on-premises deployments appeal to operators with strict latency, security, or data sovereignty requirements.
Across application segments, distinctions between pre-production planning and management, in-production planning and management, and post-production planning and management guide solution design and commercial models. Pre-production work focuses on soil conditioning, variety selection, and resource allocation; in-production capabilities concentrate on real-time monitoring and actuation; and post-production systems emphasize traceability, grading, and logistics optimization. Finally, end-user segmentation that includes farmers, government agencies, and research institutions highlights divergent purchasing rationales: farmers seek operational efficiency and risk mitigation, government agencies prioritize compliance and food security goals, and research institutions require extensible platforms for experimentation and longitudinal studies.
Regional adoption contrasts and market drivers that explain how Americas, Europe, Middle East & Africa, and Asia-Pacific are shaping different connected agriculture pathways
Regional variations in adoption and competitive dynamics are pronounced and influence strategic positioning for vendors, integrators, and policy makers. In the Americas, adoption is driven by a mix of large-scale commercial agriculture and progressive service ecosystems that favor managed services and precision machinery management; the presence of mature venture and corporate investment channels accelerates commercialization of innovative solutions and channel partnerships. Conversely, in Europe, Middle East & Africa, regulatory emphasis on sustainability metrics and traceability catalyzes demand for greenhouse automation, irrigation management, and weather and soil monitoring solutions that can document environmental performance and support compliance.
In Asia-Pacific, the diversity of farm sizes and climatic conditions creates a fertile environment for both low-cost sensor networks and advanced greenhouse automation, with strong interest from research institutions and public agencies in piloting scalable models. Cross-region data flows and multinational OEM strategies reflect these geographical nuances, and vendors increasingly tailor deployment and pricing strategies to local infrastructure realities and policy objectives. Moreover, regional financing mechanisms, workforce skills, and distribution networks shape the pace at which pilots can transition to large-scale rollouts, influencing where early commercial returns are realized and how ecosystem partnerships evolve across borders.
Competitive landscape analysis revealing how platform extensibility, vertical integration, and outcome-focused service models determine resilience and growth potential
Competitive dynamics in the connected agriculture landscape are characterized by diverse capabilities across solution developers, service providers, and technology integrators. Leading players are differentiating through platform extensibility, vertical integration of hardware and software, and comprehensive service portfolios that include consulting, deployment, and ongoing support. The most resilient companies combine domain expertise in agronomy with strong systems engineering capabilities, enabling them to tailor crop monitoring, irrigation, and livestock solutions to heterogeneous operating environments while maintaining high standards of reliability and interoperability.
Partnership strategies are central to competitive positioning, with firms forming alliances across cloud providers, equipment OEMs, and research organizations to accelerate time-to-market and to expand addressable use cases. Companies that invest in robust device management frameworks and connectivity resilience reduce customer churn by minimizing downtime and simplifying maintenance. Meanwhile, vendors that emphasize outcomes-based contracting and performance guarantees are gaining traction with large-scale operators seeking predictable returns. This competitive landscape is dynamic; incumbents must continuously refine integration capabilities and service delivery models to maintain relevance as new entrants introduce niche innovations and as regional players scale.
Practical and immediate recommendations for leaders to build resilient supply chains, service-led adoption strategies, and interoperable platform ecosystems for agriculture
Industry leaders should adopt a pragmatic combination of technological rigor and commercial adaptability to capitalize on connected agriculture opportunities. Begin by prioritizing modular architectures that allow substitution of components and mitigate supply-chain disruptions, thereby enabling rapid reconfiguration when tariff policies or component shortages arise. Simultaneously, invest in service capabilities-consulting, professional services, training, and managed operations-to reduce friction for adopters and to create recurring revenue streams that stabilize growth during market volatility.
Leaders should also pursue regional manufacturing and assembly partnerships to shorten lead times and to align cost structures with local demand realities. This approach should be combined with a differentiated deployment strategy that offers both cloud and on-premises options, allowing customers to choose architectures that match latency, sovereignty, and operational constraints. From a go-to-market perspective, emphasize use cases with clear operational or sustainability ROI such as precision irrigation and livestock health monitoring, and design flexible commercial terms that lower the barrier to trial.
Finally, commit resources to data governance and interoperability initiatives that enable cross-vendor compatibility and build trust with farmers and regulators. Develop measurable pilot metrics and knowledge-transfer programs to accelerate adoption at scale, and embed mechanisms for continuous feedback from end users-farmers, government agencies, and research institutions-to iterate product roadmaps quickly and to maintain alignment with evolving on-farm priorities.
A transparent, mixed-methods research approach combining field validation, stakeholder interviews, and rigorous triangulation to produce actionable and defensible insights
The research methodology underpinning this analysis combined a multi-tiered approach to ensure rigor, representativeness, and practical relevance. Primary research included structured interviews with a cross-section of ecosystem participants-technology vendors, farm operators, public-sector representatives, and academic researchers-supplemented by field visits and pilot-site observations to validate real-world performance of sensors, connectivity solutions, and automation systems. These engagements were designed to capture operational pain points, procurement rationales, and the effectiveness of training and support models.
Secondary research encompassed an extensive review of technical literature, regulatory documents, and publicly available standards to map interoperability challenges and to assess the evolution of device and network protocols. Data synthesis prioritized triangulation: insights from interviews were corroborated against deployment case studies and technical performance reports to reduce bias and to highlight recurring themes. Throughout the process, quality controls such as respondent validation, methodological transparency, and iterative peer review were applied to ensure findings are robust and actionable.
Analytical techniques included scenario analysis to explore the implications of trade policy changes and sensitivity testing to understand how variations in deployment choices affect operational outcomes. The methodology emphasizes traceability of assumptions and provides auditors with a clear lineage from raw inputs to final conclusions, facilitating confident decision-making by commercial and public stakeholders.
An integrative conclusion emphasizing service-led execution, supply-chain resilience, and tailored regional strategies as determinants of success in connected agriculture
This concluding synthesis underscores that connected agriculture is more than a collection of point technologies; it is an ecosystem transformation that requires coordinated investment in platforms, services, and institutional capacity. The most consequential drivers of adoption are not merely sensor accuracy or analytics sophistication, but the ability to deliver reliable operational outcomes through strong service models, flexible deployment architectures, and resilient supply chains. Policymakers, vendors, and end users alike must align around interoperability standards, workforce development, and finance mechanisms that lower barriers to scaling successful pilots.
Trade policies and tariff actions in 2025 have illuminated the vulnerability of globalized supply chains and accelerated strategic responses such as regionalization of manufacturing and increased emphasis on modular hardware design. These shifts favor organizations that can adapt procurement strategies quickly and that maintain diversified supplier relationships. At the same time, regional market characteristics-from the capital intensity in the Americas to sustainability-driven demand in Europe, Middle East & Africa, and the diverse needs of Asia-Pacific-require tailored approaches rather than one-size-fits-all solutions.
Looking ahead, stakeholders who invest in robust device management, resilient connectivity, and immersive training programs will unlock the greatest value. By prioritizing outcome-oriented solutions and embedding continuous feedback loops between farmers, governments, and researchers, the sector can scale technologies that drive productivity while meeting environmental and traceability expectations. The conclusion affirms that pragmatic, service-led execution combined with strategic supply-chain management will determine who captures leadership in the evolving connected agriculture landscape.
Please Note: PDF & Excel + Online Access - 1 Year
Table of Contents
193 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Implementation of AI-driven predictive analytics with real-time soil moisture monitoring to optimize irrigation scheduling
- 5.2. Deployment of drone-based multispectral imaging integrated with machine learning models for crop health assessment
- 5.3. Adoption of blockchain-enabled supply chain traceability platforms for transparent provenance tracking of fresh produce
- 5.4. Integration of edge computing devices with IoT sensor networks for real-time pest and disease detection in fields
- 5.5. Utilization of 5G connectivity to support autonomous farm machinery and remote equipment telemetry in large-scale operations
- 5.6. Implementation of cloud-based farm management software with interoperable data standards for system-wide analytics and collaboration
- 5.7. Expansion of digital twin technology to simulate and optimize greenhouse environmental controls and crop growth strategies
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. Connected Agriculture Market, by Component
- 8.1. Services
- 8.1.1. Consulting Services
- 8.1.2. Managed Services
- 8.1.3. Professional Services
- 8.1.4. Support & Maintenance
- 8.1.5. Training & Education
- 8.2. Solutions
- 8.2.1. Crop Monitoring
- 8.2.2. Farming Machinery Management
- 8.2.3. Greenhouse Automation
- 8.2.4. Irrigation Management
- 8.2.5. Livestock Monitoring
- 8.2.6. Weather & Soil Monitoring
- 9. Connected Agriculture Market, by Module
- 9.1. Application Enablement
- 9.2. Connectivity Management
- 9.3. Device Management
- 10. Connected Agriculture Market, by Deployment
- 10.1. Cloud
- 10.2. On-Premises
- 11. Connected Agriculture Market, by Application
- 11.1. In-Production Planning & Management
- 11.2. Post-Production Planning & Management
- 11.3. Pre-Production Planning & Management
- 12. Connected Agriculture Market, by End User
- 12.1. Farmers
- 12.2. Government Agencies
- 12.3. Research Institutions
- 13. Connected Agriculture Market, by Region
- 13.1. Americas
- 13.1.1. North America
- 13.1.2. Latin America
- 13.2. Europe, Middle East & Africa
- 13.2.1. Europe
- 13.2.2. Middle East
- 13.2.3. Africa
- 13.3. Asia-Pacific
- 14. Connected Agriculture Market, by Group
- 14.1. ASEAN
- 14.2. GCC
- 14.3. European Union
- 14.4. BRICS
- 14.5. G7
- 14.6. NATO
- 15. Connected Agriculture Market, by Country
- 15.1. United States
- 15.2. Canada
- 15.3. Mexico
- 15.4. Brazil
- 15.5. United Kingdom
- 15.6. Germany
- 15.7. France
- 15.8. Russia
- 15.9. Italy
- 15.10. Spain
- 15.11. China
- 15.12. India
- 15.13. Japan
- 15.14. Australia
- 15.15. South Korea
- 16. Competitive Landscape
- 16.1. Market Share Analysis, 2024
- 16.2. FPNV Positioning Matrix, 2024
- 16.3. Competitive Analysis
- 16.3.1. Accenture PLC
- 16.3.2. Ag Leader Technology
- 16.3.3. AGCO Corporation
- 16.3.4. AGRIVI Ltd.
- 16.3.5. BASF SE
- 16.3.6. Bayer AG
- 16.3.7. Cisco Systems, Inc.
- 16.3.8. CNH Industrial N.V.
- 16.3.9. Conservis By Traction Ag Inc.
- 16.3.10. Corteva, Inc.
- 16.3.11. Cropin Technology Solutions Private Limited
- 16.3.12. Croptracker, Inc.
- 16.3.13. Deere & Company
- 16.3.14. Farmers Edge Inc.
- 16.3.15. Gamaya
- 16.3.16. Granular Inc.
- 16.3.17. Hexagon AB
- 16.3.18. International Business Machines Corporation
- 16.3.19. Kubota Corporation
- 16.3.20. Lindsay Corporation
- 16.3.21. Microsoft Corporation
- 16.3.22. Oracle Corporation
- 16.3.23. Robert Bosch GmbH
- 16.3.24. SAP SE
- 16.3.25. Shivrai Technologies Pvt. Ltd.
- 16.3.26. SMAG by InVivo
- 16.3.27. Syngenta AG
- 16.3.28. Taranis
- 16.3.29. TELUS Communications Inc.
- 16.3.30. Tend.com
- 16.3.31. Topcon Corporation
- 16.3.32. Yara International ASA
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

