Report cover image

Augmented Analytics Market by Component (Platforms, Services), Technology (Artificial Intelligence (AI), Business Intelligence (BI) Integration Tools, Data Discovery & Visualization Tools), Deployment Mode, End User, Application, End-use - Global Forecast

Publisher 360iResearch
Published Sep 30, 2025
Length 184 Pages
SKU # IRE20440947

Description

The Augmented Analytics Market was valued at USD 19.03 billion in 2024 and is projected to grow to USD 24.27 billion in 2025, with a CAGR of 30.03%, reaching USD 155.62 billion by 2032.

Unveiling the Transformative Potential of Augmented Analytics to Accelerate Insight-Driven Decision-Making in Modern Business Ecosystems

Augmented analytics is emerging as a cornerstone technology that fuses advanced artificial intelligence, machine learning, and natural language processing to elevate data analysis beyond traditional boundaries. By embedding intelligent algorithms across data preparation, insight generation, and storytelling, it empowers decision-makers at all levels to access actionable intelligence without relying solely on data scientists. As organizations strive to become truly data-driven, augmented analytics bridges the gap between complex datasets and strategic objectives, enabling faster, more informed choices.

This transformative capability extends well past mere automation. It enhances human expertise by highlighting hidden patterns, suggesting new analytical angles, and generating narrative summaries that translate numbers into compelling recommendations. Consequently, leaders can identify opportunities for operational improvements, revenue optimization, and risk mitigation with unprecedented speed and accuracy. With the growing volume and variety of data sources-from IoT devices to customer interactions-the complement of automated insight discovery and clear visualization is essential.

In today’s environment, competitive advantage hinges on the ability to convert raw data into clear strategic direction. As industries evolve and data landscapes grow increasingly complex, augmented analytics stands out as the enabler for democratized intelligence, driving agility and innovation across every function.

Exploring How AI, Machine Learning, and Automation Are Catalyzing the Next Wave of Augmented Analytics Innovation and Operational Efficiency

The landscape of analytics is undergoing transformative shifts driven by the convergence of AI, automation, and cloud computing. Organizations are no longer satisfied with static dashboards, and instead demand systems that can learn and adapt. Machine learning models are being integrated directly into analytics platforms, automating tasks such as data cleansing, anomaly detection, and predictive modeling. As a result, data teams can focus on interpreting insights rather than wrangling datasets.

Natural language processing has also emerged as a pivotal enabler in this evolution. End users can now pose questions in everyday language and receive analytical answers without needing code or query languages. This democratization of analytics is complemented by automated recommendation engines that guide users through complex analytical workflows, suggesting the most relevant visualizations or statistical tests based on data context.

Moreover, the shift toward real-time decision-making has accelerated the adoption of edge analytics and streaming data processing. Businesses can detect emerging trends, respond to customer behaviors, and optimize operations on the fly. This fusion of cutting-edge AI, conversational interfaces, and automated data orchestration is redefining the analytics paradigm, creating an environment where insights are continuously generated, refined, and actioned.

Assessing the Comprehensive Effects of 2025 United States Tariffs on Technology Supply Chains and the Adoption Trajectory of Data Analytics Solutions Worldwide

The implementation of United States tariffs in 2025 has introduced new complexities for organizations integrating augmented analytics solutions, particularly those reliant on global technology ecosystems. Increases in duties on hardware components and software imports have driven procurement teams to reevaluate vendor portfolios and logistics strategies. Companies with significant investments in analytics accelerators, data storage arrays, or specialized processing units have encountered higher upfront costs, prompting many to explore alternative sourcing options or negotiate revised service agreements with platform providers.

At the same time, cloud service contracts have felt indirect effects. Providers that rely on offshore data center expansions are adjusting their capital expenditure plans, leading to renegotiations around pricing tiers and service levels. Some users are shifting portions of their workloads between regions to optimize costs and compliance. The ripple effects extend to partner ecosystems, where integrators and managed service providers are balancing pass-through charges with value-added support to preserve customer loyalty.

Despite these headwinds, organizations remain committed to leveraging augmented analytics to extract deeper insights and maintain competitive agility. The broader strategy involves diversifying supply chain channels, embracing hybrid deployment models, and fostering stronger vendor relationships to mitigate the impact of tariff-induced cost pressures.

Illuminating Critical Insights from Component, Deployment, End User, Application, and Industry Segmentation to Unlock Strategic Opportunities

When reviewing augmented analytics through the lens of component analysis, platforms dominate as the primary environment for embedding AI-driven capabilities, while specialized services provide targeted expertise in areas such as model tuning and narrative generation. This duality ensures that organizations can deploy end-to-end solutions or supplement internal capabilities with external support.

From a deployment perspective, cloud-based implementations continue to gain traction for their scalability, rapid provisioning, and seamless integration with existing enterprise workloads, whereas on-premises installations remain prevalent where stringent data sovereignty, latency requirements, or legacy dependencies exist. The interplay between public cloud offerings and private infrastructure is creating hybrid architectures that balance agility with control.

Diversity among end users is pronounced. Large enterprises leverage augmented analytics to manage complex global operations and large volumes of transactional data, while small and medium-sized enterprises capitalize on ease of use and quick time to value to enhance core business processes.

Application-driven segmentation reveals distinct patterns of adoption. In finance functions, performance analytics and risk analytics are critical for scenario planning and regulatory compliance. Human resources teams employ talent analytics and workforce planning analytics to optimize recruitment and retention strategies. Marketing departments rely on campaign analytics and customer analytics to refine engagement, while sales units apply customer analytics, forecasting, and performance management to boost conversion rates. Supply chain specialists focus on demand forecasting and inventory optimization to maintain service levels and reduce carrying costs.

Industry verticals further influence priorities. Financial services, government and defense, healthcare and life sciences, IT and telecom, manufacturing, retail and ecommerce, and transportation and logistics each present unique data challenges and compliance mandates, driving tailored solution roadmaps.

Decoding Regional Dynamics in the Americas, Europe, Middle East & Africa, and Asia-Pacific to Guide Tailored Analytics Strategies

Regional dynamics profoundly shape how organizations adopt and benefit from augmented analytics technologies. In the Americas, robust investment in digital transformation and a mature ecosystem of cloud-native providers underpin rapid uptake. Early adopters in sectors such as finance and retail are using intelligent analytics to optimize customer journeys and streamline back-office processes.

Conversely, Europe, Middle East & Africa present a landscape marked by varied regulatory frameworks and data protection standards. Innovation hubs in Western Europe prioritize privacy-enhancing analytics and cross-border data collaboration, while emerging markets in the Middle East & Africa leverage analytics to modernize public sector services and infrastructure projects. Comparative regulatory rigor drives demand for transparent, auditable analytics solutions.

Asia-Pacific exhibits the fastest growth rates, fueled by aggressive digitalization efforts in manufacturing, telecom, and government services. Organizations across this region are integrating AI-driven insights to support smart manufacturing initiatives and enhance citizen services. Strategic partnerships between local technology firms and global analytics vendors accelerate technology transfer and skill development.

Across all territories, a common thread emerges: successful deployments blend global best practices with local expertise, creating tailored analytics frameworks that respect data governance requirements, cultural norms, and economic priorities.

Unveiling Market Leaders and Innovators Delivering Pioneering Solutions and Services That Define the Competitive Augmented Analytics Landscape

Key players in the augmented analytics domain are distinguished by their ability to meld platform innovation with ecosystem partnerships. Established technology providers continue to expand their footprints by embedding automated data preparation, advanced visualization, and predictive insights into unified suites. They invest heavily in research and development, extending model libraries and enhancing user interfaces to reduce adoption friction.

Simultaneously, emerging specialists carve out niches by focusing on vertical-specific challenges and offering rapid deployment frameworks. These innovators accelerate time to value with prebuilt connectors, domain-adapted algorithms, and turnkey industry templates. Strategic alliances with consulting firms and systems integrators amplify their reach, enabling joint go-to-market initiatives that address complex transformation roadmaps.

Competitive differentiation also arises from service models. Organizations that pair robust platforms with managed analytics offerings deliver end-to-end intelligence under a single engagement. This approach simplifies vendor management and ensures consistent performance SLAs. Others prioritize open architectures and developer-friendly APIs, empowering custom integration and extensibility.

In this dynamic environment, the winners will be those who balance relentless innovation, customer-centric design, and flexible delivery models to address evolving enterprise requirements and emerging use cases.

Strategic Recommendations Empowering Industry Leaders to Capitalize on Augmented Analytics for Sustainable Growth and Operational Excellence

For organizations seeking to maximize the impact of augmented analytics, a clear roadmap is essential. Executives should begin by conducting a comprehensive data maturity assessment to identify gaps in infrastructure, skills, and governance. From there, developing a phased implementation plan that aligns with business priorities-such as customer experience improvement or supply chain resilience-will ensure early wins and build stakeholder confidence.

Investment in talent is equally critical. Cross-functional teams that blend data scientists, domain experts, and business analysts can collaborate more effectively when supported by continuous learning programs and access to sandbox environments. Embedding agile methodologies into analytics projects promotes iterative refinement, enabling solutions to evolve with changing requirements.

Data governance frameworks must evolve to accommodate AI-driven workflows. Establishing clear policies around data quality, lineage, and privacy safeguards mitigates risk and fosters trust among regulators and end users. Moreover, pilot initiatives should be designed to validate cost-benefit scenarios, inform scaling decisions, and refine vendor selection criteria.

Finally, fostering an analytics-driven culture is paramount. Leadership endorsement, transparent communication of success stories, and reward systems that recognize data-driven achievements will accelerate adoption and elevate organizational performance across all levels.

Detailing a Rigorous Research Methodology Combining Primary and Secondary Data, Expert Interviews, and Advanced Analytical Techniques

The foundation of this analysis rests on a rigorous research methodology that integrates both primary and secondary data sources. Initially, secondary research entailed thorough reviews of industry publications, academic journals, regulatory filings, and technology whitepapers to map the ecosystem and identify emerging trends. This desk research provided the context for targeted primary engagements with domain experts.

Primary research involved in-depth interviews with C-level executives, data architects, analytics professionals, and end users spanning diverse industries. These conversations shed light on real-world deployment challenges, integration strategies, and return on investment considerations. To validate findings and resolve conflicting insights, a process of data triangulation was applied, cross-referencing qualitative inputs with quantitative benchmarks.

Analytical frameworks such as SWOT analysis and comparative feature mapping were employed to assess vendor capabilities and adoption barriers. Data from interview transcripts was coded and synthesized to highlight recurrent themes, while secondary data provided supportive evidence for regional and segment-level observations.

Additionally, subject-matter advisory panels reviewed preliminary conclusions, offering critical feedback and ensuring that final recommendations are both actionable and aligned with industry best practices. This multi-faceted approach guarantees the analysis is robust, transparent, and reflective of current market dynamics.

Summarizing Key Findings and Strategic Imperatives to Propel Decision-Makers Toward Data-Driven Success and Competitive Advantage

In summary, augmented analytics represents a strategic leap forward for organizations seeking to transform raw data into a continuous stream of actionable insights. By automating complex data processes and embedding AI-driven intelligence across operational and strategic functions, businesses can address challenges ranging from risk management to customer personalization with greater speed and precision.

The evolving ecosystem-characterized by rapid technological innovation, shifting regulatory climates, and cost pressures arising from global trade policies-requires a proactive stance. Success will favor those who adopt a holistic approach, integrating the right mix of platforms, services, and governance frameworks that align with their unique operational and industry contexts.

Executives must champion data literacy, foster collaborative analytics cultures, and invest in scalable architectures that support both cloud and on-premises deployments. Strategic partnerships with technology providers and consultancies can accelerate the journey, providing the expertise and tools necessary to navigate complexities.

Ultimately, the organizations that embrace augmented analytics as a core element of their digital transformation agenda will unlock new levels of agility, innovation, and competitive advantage. The path forward is clear: leverage intelligent analytics to drive evidence-based decisions and sustain long-term growth.

Market Segmentation & Coverage

This research report categorizes to forecast the revenues and analyze trends in each of the following sub-segmentations:

Component
Platforms
Services
Managed Services
Professional Services
Technology
Artificial Intelligence (AI)
Business Intelligence (BI) Integration Tools
Data Discovery & Visualization Tools
Deployment Mode
Cloud
On Premises
End User
Large Enterprise
SMEs
Application
Fraud Detection
Operations Management
Product Development & Innovation
Risk & Compliance Management
Sales & Marketing Optimization
Supply Chain Analytics
Workforce Analytics
End-use
Banking, Financial Services, and Insurance (BFSI)
Education
Energy & Utilities
Government & Public Sector
Healthcare & Life Sciences
Manufacturing
Media & Entertainment
Oil & Gas
Retail & Consumer Goods
Telecommunications & Information Technology (IT)
Transportation & Logistics

This research report categorizes to forecast the revenues and analyze trends in each of the following sub-regions:

Americas
North America
United States
Canada
Mexico
Latin America
Brazil
Argentina
Chile
Colombia
Peru
Europe, Middle East & Africa
Europe
United Kingdom
Germany
France
Russia
Italy
Spain
Netherlands
Sweden
Poland
Switzerland
Middle East
United Arab Emirates
Saudi Arabia
Qatar
Turkey
Israel
Africa
South Africa
Nigeria
Egypt
Kenya
Asia-Pacific
China
India
Japan
Australia
South Korea
Indonesia
Thailand
Malaysia
Singapore
Taiwan

This research report categorizes to delves into recent significant developments and analyze trends in each of the following companies:

Actian Corporation
Aible, Inc.
Altair Engineering Inc.
Alteryx, Inc.
AtScale, Inc.
Databricks, Inc.
DataRobot, Inc.
Domo, Inc.
DotData, Inc.
GoodData Corporation
Infor Equity Holdings, LLC
International Business Machines Corporation
KNIME AG
Microsoft Corporation
MicroStrategy Incorporated
Oracle Corporation
QlikTech International AB
Salesforce, Inc.
SAP SE
SAS Institute Inc.
Sisense, Inc.
Tellius, Inc.
ThoughtSpot, Inc.
Yellowfin BI
Zoho Corporation

Please Note: PDF & Excel + Online Access - 1 Year

Table of Contents

184 Pages
1. Preface
1.1. Objectives of the Study
1.2. Market Segmentation & Coverage
1.3. Years Considered for the Study
1.4. Currency & Pricing
1.5. Language
1.6. Stakeholders
2. Research Methodology
3. Executive Summary
4. Market Overview
5. Market Insights
5.1. Adoption of automated data storytelling powered by natural language generation to enhance decision making
5.2. Implementation of no-code machine learning workflows in augmented analytics platforms for citizen data scientists
5.3. Integration of real-time anomaly detection capabilities leveraging streaming data and ai models
5.4. Expansion of embedded augmented analytics features within enterprise applications for seamless user experiences
5.5. Use of augmented analytics to automate data quality profiling and anomaly identification in complex datasets
6. Cumulative Impact of United States Tariffs 2025
7. Cumulative Impact of Artificial Intelligence 2025
8. Augmented Analytics Market, by Component
8.1. Platforms
8.2. Services
8.2.1. Managed Services
8.2.2. Professional Services
9. Augmented Analytics Market, by Technology
9.1. Artificial Intelligence (AI)
9.2. Business Intelligence (BI) Integration Tools
9.3. Data Discovery & Visualization Tools
10. Augmented Analytics Market, by Deployment Mode
10.1. Cloud
10.2. On Premises
11. Augmented Analytics Market, by End User
11.1. Large Enterprise
11.2. SMEs
12. Augmented Analytics Market, by Application
12.1. Fraud Detection
12.2. Operations Management
12.3. Product Development & Innovation
12.4. Risk & Compliance Management
12.5. Sales & Marketing Optimization
12.6. Supply Chain Analytics
12.7. Workforce Analytics
13. Augmented Analytics Market, by End-use
13.1. Banking, Financial Services, and Insurance (BFSI)
13.2. Education
13.3. Energy & Utilities
13.4. Government & Public Sector
13.5. Healthcare & Life Sciences
13.6. Manufacturing
13.7. Media & Entertainment
13.8. Oil & Gas
13.9. Retail & Consumer Goods
13.10. Telecommunications & Information Technology (IT)
13.11. Transportation & Logistics
14. Augmented Analytics Market, by Region
14.1. Americas
14.1.1. North America
14.1.2. Latin America
14.2. Europe, Middle East & Africa
14.2.1. Europe
14.2.2. Middle East
14.2.3. Africa
14.3. Asia-Pacific
15. Augmented Analytics Market, by Group
15.1. ASEAN
15.2. GCC
15.3. European Union
15.4. BRICS
15.5. G7
15.6. NATO
16. Augmented Analytics Market, by Country
16.1. United States
16.2. Canada
16.3. Mexico
16.4. Brazil
16.5. United Kingdom
16.6. Germany
16.7. France
16.8. Russia
16.9. Italy
16.10. Spain
16.11. China
16.12. India
16.13. Japan
16.14. Australia
16.15. South Korea
17. Competitive Landscape
17.1. Market Share Analysis, 2024
17.2. FPNV Positioning Matrix, 2024
17.3. Competitive Analysis
17.3.1. Actian Corporation
17.3.2. Aible, Inc.
17.3.3. Altair Engineering Inc.
17.3.4. Alteryx, Inc.
17.3.5. AtScale, Inc.
17.3.6. Databricks, Inc.
17.3.7. DataRobot, Inc.
17.3.8. Domo, Inc.
17.3.9. DotData, Inc.
17.3.10. GoodData Corporation
17.3.11. Infor Equity Holdings, LLC
17.3.12. International Business Machines Corporation
17.3.13. KNIME AG
17.3.14. Microsoft Corporation
17.3.15. MicroStrategy Incorporated
17.3.16. Oracle Corporation
17.3.17. QlikTech International AB
17.3.18. Salesforce, Inc.
17.3.19. SAP SE
17.3.20. SAS Institute Inc.
17.3.21. Sisense, Inc.
17.3.22. Tellius, Inc.
17.3.23. ThoughtSpot, Inc.
17.3.24. Yellowfin BI
17.3.25. Zoho Corporation
How Do Licenses Work?
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.