Report cover image

Artificial Intelligence in Genomics Market by AI Technique (Deep Learning, Machine Learning, Natural Language Processing), Service (Bioinformatics Services, Consulting, Sequencing Services), Sequencing Type, Application, End User - Global Forecast 2025-20

Publisher 360iResearch
Published Dec 01, 2025
Length 187 Pages
SKU # IRE20621174

Description

The Artificial Intelligence in Genomics Market was valued at USD 497.43 million in 2024 and is projected to grow to USD 523.32 million in 2025, with a CAGR of 6.99%, reaching USD 854.43 million by 2032.

A comprehensive introduction to how artificial intelligence is reshaping genomics workflows, accelerating biological discovery, and enabling precision healthcare across research and industry

Artificial intelligence (AI) is fundamentally recasting how genomic data is generated, interpreted, and translated into real-world applications. Over the past decade, improvements in sequencing throughput and computational methods have converged to create an environment where algorithmic models can mine high-dimensional biological data at scale. As a result, researchers and clinicians are increasingly able to extract clinically and agriculturally relevant signals from increasingly complex datasets, while industry players pursue integrated platforms that combine laboratory workflows with advanced analytics.

This introduction situates AI in genomics as a multidisciplinary ecosystem that spans laboratory automation, cloud-native analytics, interpretive software, and translational pipelines. Rather than relying solely on incremental improvements, organizations today are leveraging deep learning architectures for pattern recognition, machine learning for feature selection and predictive modeling, and natural language approaches to curate and interpret literature and clinical notes. This broad methodological palette supports diverse use cases, including variant interpretation in clinical diagnostics, target identification in drug discovery, and phenotypic selection in agricultural breeding.

Importantly, progress depends not just on model accuracy but on operational integration: data governance, interoperability across sequencing platforms, and workforce capability are central determinants of success. Consequently, stakeholders must balance investment in algorithmic innovation with capacity-building in bioinformatics services, sequencing infrastructure, and translational partnerships that bridge discovery and end-user adoption.

A detailed exploration of the transformative technological, regulatory, and clinical shifts driving AI integration in genomics and creating new operational paradigms for stakeholders

The landscape for AI in genomics is experiencing transformative shifts driven by technological maturation, regulatory evolution, and changing economic incentives. Advances in representation learning and transfer learning have enabled models to generalize across datasets that were previously siloed, while federated learning and privacy-preserving techniques are expanding the scope for multi-institutional collaboration without exposing sensitive patient-level data. Meanwhile, the deployment of cloud-native orchestration and containerized pipelines has reduced the friction for deploying sophisticated analytics across distributed laboratory footprints.

At the same time, regulatory frameworks are evolving to address algorithmic transparency, clinical validation, and post-market surveillance. Developers and adopters are adapting by emphasizing explainability, robust validation on real-world cohorts, and lifecycle monitoring of model performance. This regulatory attention is catalyzing higher standards for data provenance, reproducibility, and auditability, which in turn shapes product roadmaps and go-to-market strategies.

Operationally, there is a pronounced shift from proof-of-concept pilots toward scalable, production-ready systems. Stakeholders are prioritizing integration with electronic health records, laboratory information management systems, and supply chain partners to ensure analytic outputs are actionable within clinical and agricultural workflows. Consequently, successful organizations are those that combine technical excellence with pragmatic approaches to governance, interoperability, and stakeholder engagement.

An analytical assessment of the cumulative impact of United States tariffs in 2025 on genomics AI supply chains, innovation incentives, and global collaboration dynamics

The introduction of United States tariffs in 2025 has created a set of cumulative effects across supply chains, research pipelines, and collaboration ecosystems relevant to AI-driven genomics. Tariff-induced cost pressures have amplified procurement scrutiny for hardware, reagents, and sequencing consumables, prompting institutions to reassess vendor portfolios and contract structures. In response, many organizations have accelerated supplier diversification strategies, prioritized local manufacturing where feasible, and increased emphasis on negotiating tariff exemptions or duty drawback arrangements when cross-border movement of research goods is essential.

Beyond procurement, the tariff environment has shaped strategic R&D decisions. Some laboratories have rebalanced capital allocation between on-premise infrastructure and cloud-based services to mitigate upfront hardware expenses, while others have delayed non-critical capital projects to preserve liquidity. At the industry level, tariff dynamics have influenced partnership negotiations and cross-border collaborations; organizations are increasingly factoring trade policy risk into joint development agreements and licensing arrangements.

From a broader innovation perspective, tariffs have also altered competitive incentives in geographies that are both import-dependent and export-oriented. This has encouraged regional hubs to invest in domestic talent development and manufacturing capacity, thereby reshaping long-term collaboration networks. Ultimately, the tariff environment has underscored the importance of resilient procurement strategies, adaptive commercialization plans, and a nuanced appreciation for trade policy when planning global deployments of AI-enabled genomics solutions.

Key segmentation insights revealing how applications, AI techniques, services, sequencing types, and end users uniquely intersect to shape investment and research priorities

A nuanced understanding of market segmentation sheds light on where AI systems deliver the greatest practical value and how resources should be prioritized. When viewed through the lens of application, AI in genomics serves agriculture and animal genomics-addressing crop improvement and livestock breeding-alongside diagnostics, which includes both clinical and research diagnostics. In parallel, drug discovery workflows leverage AI across lead identification, preclinical testing, and target validation, while precision medicine initiatives focus on companion diagnostics, personalized therapeutics, and pharmacogenomics. This spectrum of use cases highlights how application-specific requirements determine data types, model interpretability needs, and deployment pathways.

Methodologically, AI techniques range from deep learning, with subdomains such as autoencoders, convolutional architectures, and recurrent networks, to classical machine learning paradigms encompassing reinforcement, supervised, and unsupervised approaches, as well as natural language processing capabilities used for sentiment analysis and text mining. Each technique has distinct data demands and validation imperatives, informing investment in computational resources and annotation workflows.

Service-oriented segmentation underscores the importance of bioinformatics services-spanning annotation, data analysis, and interpretation-and consulting offerings that provide implementation support and strategic guidance. Sequencing services vary across exome, transcriptome, and whole genome approaches, and software and platform options are differentiated by cloud-based or on-premise delivery models. Sequencing type choices, between next-generation sequencing platforms like Illumina, Ion Torrent, and PacBio and legacy Sanger modalities such as capillary and fluorescence methods, influence throughput, error profiles, and downstream analytic complexity. Finally, end users, including academic and research institutions, hospitals and clinics, and pharma and biotech organizations, bring distinct adoption drivers and procurement behaviors that collectively shape commercialization strategies.

Regional intelligence highlighting distinctive drivers, infrastructure strengths, and collaborative opportunities across the Americas, Europe Middle East Africa, and Asia-Pacific genomic ecosystems

Regional dynamics exert a powerful influence on how AI in genomics is adopted, funded, and regulated, with notable distinctions across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, strong private investment ecosystems, extensive academic-industry linkages, and a deep clinical trial infrastructure support rapid translation of algorithmic innovations into commercial and clinical products. North American centers of excellence often lead in integrating cloud-native analytics with large-scale genomic cohorts, yet these advantages are counterbalanced by heightened regulatory scrutiny and fragmented reimbursement pathways that require careful navigation.

The Europe, Middle East & Africa region exhibits heterogeneity in infrastructure and regulation, where robust data protection standards coexist with ambitious public research programs. This environment incentivizes privacy-first approaches and federated analytics that can operate across national boundaries. In parallel, regional initiatives aimed at harmonizing regulatory frameworks are creating predictable pathways for clinical validation of AI-enabled diagnostics.

Asia-Pacific markets are distinguished by a combination of government-led investments, rapidly expanding sequencing capacity, and agile commercial ecosystems. These factors enable accelerated uptake in both clinical and agricultural applications, with strong domestic manufacturing capabilities emerging in certain countries. Across regions, collaborative networks, cross-border partnerships, and talent mobility will continue to shape who leads in specific application domains and how innovation diffuses globally.

Competitive company insights detailing capability clusters, partnership patterns, and strategic positioning that determine competitive advantage in the AI-enabled genomics landscape

Companies operating in the AI genomics domain are organizing around distinct capability clusters that define competitive advantage: platform providers that integrate sequencing, data management, and analytics; specialized service firms offering bioinformatics and sequencing services; and vertical players focused on end-to-end solutions for diagnostics, drug discovery, or agricultural breeding. Strategic partnerships and ecosystem plays are prevalent, with commercial alliances bringing together algorithmic expertise, clinical validation networks, and distribution channels. This collaborative approach accelerates time-to-market and spreads the technical and regulatory burden required to bring complex products to adoption.

Investment in talent and reproducible development processes is a differentiator. Firms that demonstrate rigorous validation frameworks, transparent model documentation, and strong data governance are better positioned to secure institutional and clinical customers. In addition, there is a bifurcation between companies pursuing proprietary, vertically integrated models and those embracing open or interoperable platforms that facilitate third-party application development. Mergers, acquisitions, and licensing arrangements are being used tactically to fill capability gaps, acquire curated datasets, or scale commercial operations more rapidly.

From a product design perspective, successful organizations prioritize user-centric workflows that embed explainability, clinical context, and seamless integration with laboratory and health IT systems. Finally, geographic footprint-particularly proximity to major research hospitals, agricultural hubs, or manufacturing bases-remains an operational consideration that affects go-to-market choices and partnership strategies.

Actionable recommendations for industry leaders to implement ethical AI architectures, align talent and governance, and accelerate translational impact without compromising data integrity

To translate potential into sustained impact, industry leaders should adopt a triad of strategic imperatives that reconcile innovation velocity with responsibility and operational resilience. First, prioritize architectural choices that embed privacy-preserving practices, model explainability, and robust validation into product lifecycles. By designing systems that facilitate auditability and performance monitoring, organizations reduce regulatory friction and accelerate clinical acceptance. Second, align talent strategies with governance: invest in interdisciplinary teams that combine domain expertise in genomics with data science, regulatory affairs, and implementation engineering to ensure solutions are clinically meaningful and operationally deployable.

Third, strengthen supply chain and commercial strategies to withstand policy and trade shocks. This includes diversifying supplier bases, negotiating flexible contractual terms, and assessing hybrid deployment models that balance on-premise control with cloud scalability. At the same time, leaders should cultivate translational partnerships across academia, healthcare systems, and agricultural research centers to secure validation cohorts and routinize adoption pathways. Lastly, adopt an evidence-based commercialization approach that leverages real-world performance data to demonstrate clinical utility and cost-effectiveness, supporting reimbursement discussions and enterprise procurement processes.

Collectively, these recommendations help organizations move beyond isolated proofs of concept to durable, ethically grounded products that deliver measurable value across research, clinical, and agricultural domains.

A transparent research methodology that outlines data sources, analytical frameworks, validation workflows, and limitations to ensure reproducibility and informed decision-making

The research methodology underpinning this report combines qualitative and quantitative approaches to ensure analytical rigor and transparency. Primary inputs included structured interviews with domain experts across research institutions, clinical laboratories, regulatory authorities, and commercial providers, supplemented by a review of peer-reviewed literature, regulatory guidance documents, and technical white papers. Secondary analysis synthesized trends from public company disclosures, patent filings, and conference proceedings to triangulate strategic directions and innovation pathways.

Analytical frameworks leveraged comparative technology assessment, value-chain mapping, and use-case driven validation criteria to evaluate where AI techniques are most applicable and what operational investments are required for deployment. Validation workflows incorporated cross-dataset testing, retrospective case studies, and scenario analysis to assess model robustness and generalizability across population cohorts and sequencing modalities. Limitations and potential biases were explicitly documented, including data access constraints, heterogeneity in annotation standards, and varying degrees of clinical validation across applications.

To preserve reproducibility, methodological choices, data inclusion criteria, and codebook definitions are described in accompanying appendices and can be shared under licensing arrangements. Transparency in assumptions and openness about validation boundaries were prioritized so that decision-makers can weigh the evidence against their organizational contexts and specific operational constraints.

A conclusive synthesis of strategic implications, enduring challenges, and the future trajectory for AI-driven genomics across clinical, agricultural, and industrial applications

The concluding synthesis draws together strategic implications, persistent challenges, and a forward-looking view of AI-driven genomics across clinical, agricultural, and industrial applications. Across domains, progress will be shaped by the ability to operationalize models within regulated workflows, maintain data quality at scale, and demonstrate clear utility to end users. Persistent challenges include harmonizing annotation standards across sequencing platforms, establishing robust external validation cohorts, and building interoperable systems that respect data protection norms while enabling meaningful analytics.

Despite these challenges, there are compelling opportunities to accelerate impact: integrating multi-modal data sources, applying federated learning to expand collaborative model training without compromising privacy, and embedding explainability into clinical decision support to foster trust among practitioners. Moreover, strategic investment in translational partnerships and workforce development will determine which organizations move from experimentation to routine deployment.

In sum, success in this space will favor entities that combine technical excellence with operational maturity, a commitment to ethical practice, and an adaptive approach to changing trade and policy environments. Stakeholders that align resources to these priorities will be best positioned to convert algorithmic capability into sustained scientific, clinical, and commercial outcomes.

Note: PDF & Excel + Online Access - 1 Year

Table of Contents

187 Pages
1. Preface
1.1. Objectives of the Study
1.2. Market Segmentation & Coverage
1.3. Years Considered for the Study
1.4. Currency
1.5. Language
1.6. Stakeholders
2. Research Methodology
3. Executive Summary
4. Market Overview
5. Market Insights
5.1. Deep learning algorithms improving interpretation of rare genomic variants in clinical diagnostics
5.2. AI driven drug discovery platforms leveraging large scale genomic datasets for target identification
5.3. Integration of multi omics profiles with machine learning models for personalized treatment optimization
5.4. Federated learning frameworks enabling secure cross institution genomic data analysis without data sharing
5.5. Explainable AI solutions providing transparent genomic variant classification for regulatory compliance
5.6. AI powered single cell sequencing analytics to uncover cellular heterogeneity in complex diseases
5.7. Cloud based AI driven genomics pipelines offering scalable infrastructure for high throughput sequencing
5.8. Predictive genomics models using polygenic risk scoring to forecast disease susceptibility in populations
5.9. Application of deep reinforcement learning to optimize CRISPR Cas9 off target prediction in gene editing
5.10. Real world evidence generation through AI enhanced mining of genomic and clinical health record data
6. Cumulative Impact of United States Tariffs 2025
7. Cumulative Impact of Artificial Intelligence 2025
8. Artificial Intelligence in Genomics Market, by AI Technique
8.1. Deep Learning
8.1.1. Autoencoders
8.1.2. Convolutional Neural Networks
8.1.3. Recurrent Neural Networks
8.2. Machine Learning
8.2.1. Reinforcement Learning
8.2.2. Supervised Learning
8.2.3. Unsupervised Learning
8.3. Natural Language Processing
8.3.1. Sentiment Analysis
8.3.2. Text Mining
9. Artificial Intelligence in Genomics Market, by Service
9.1. Bioinformatics Services
9.1.1. Annotation
9.1.2. Data Analysis
9.1.3. Interpretation
9.2. Consulting
9.2.1. Implementation Support
9.2.2. Strategy Development
9.3. Sequencing Services
9.3.1. Exome Sequencing
9.3.2. Transcriptome Sequencing
9.3.3. Whole Genome Sequencing
9.4. Software & Platform
9.4.1. Cloud-Based
9.4.2. On-Premise
10. Artificial Intelligence in Genomics Market, by Sequencing Type
10.1. Next Generation Sequencing
10.1.1. Illumina
10.1.2. Ion Torrent
10.1.3. PacBio
10.2. Sanger Sequencing
10.2.1. Capillary
10.2.2. Fluorescence
11. Artificial Intelligence in Genomics Market, by Application
11.1. Agriculture & Animal Genomics
11.1.1. Crop Improvement
11.1.2. Livestock Breeding
11.2. Diagnostics
11.2.1. Clinical Diagnostics
11.2.2. Research Diagnostics
11.3. Drug Discovery
11.3.1. Lead Identification
11.3.2. Preclinical Testing
11.3.3. Target Validation
11.4. Precision Medicine
11.4.1. Companion Diagnostics
11.4.2. Personalized Therapeutics
11.4.3. Pharmacogenomics
12. Artificial Intelligence in Genomics Market, by End User
12.1. Academic & Research
12.1.1. Research Institutes
12.1.2. Universities
12.2. Hospitals & Clinics
12.2.1. Diagnostic Laboratories
12.2.2. Medical Centers
12.3. Pharma & Biotech
12.3.1. Biotech Firms
12.3.2. Large Pharma
13. Artificial Intelligence in Genomics Market, by Region
13.1. Americas
13.1.1. North America
13.1.2. Latin America
13.2. Europe, Middle East & Africa
13.2.1. Europe
13.2.2. Middle East
13.2.3. Africa
13.3. Asia-Pacific
14. Artificial Intelligence in Genomics Market, by Group
14.1. ASEAN
14.2. GCC
14.3. European Union
14.4. BRICS
14.5. G7
14.6. NATO
15. Artificial Intelligence in Genomics Market, by Country
15.1. United States
15.2. Canada
15.3. Mexico
15.4. Brazil
15.5. United Kingdom
15.6. Germany
15.7. France
15.8. Russia
15.9. Italy
15.10. Spain
15.11. China
15.12. India
15.13. Japan
15.14. Australia
15.15. South Korea
16. Competitive Landscape
16.1. Market Share Analysis, 2024
16.2. FPNV Positioning Matrix, 2024
16.3. Competitive Analysis
16.3.1. Agilent Technologies, Inc.
16.3.2. BenevolentAI Ltd.
16.3.3. BGI Genomics Co., Ltd
16.3.4. Bio-Rad Laboratories, Inc.
16.3.5. Data4Cure Inc.
16.3.6. Deep Genomics Inc.
16.3.7. DNAnexus Inc.
16.3.8. Engine Biosciences Pte. Ltd.
16.3.9. Exscientia
16.3.10. F. Hoffmann-La Roche Ltd
16.3.11. Fabric Genomics Inc.
16.3.12. FDNA Inc.
16.3.13. Freenome Holdings, Inc.
16.3.14. Genomics AI
16.3.15. Genoox Ltd.
16.3.16. Illumina, Inc.
16.3.17. insitro
16.3.18. International Business Machines Corporation
16.3.19. NanoString Technologies, Inc.
16.3.20. PerkinElmer, Inc.
16.3.21. QIAGEN N.V.
16.3.22. SOPHiA Genetics SA
16.3.23. Thermo Fisher Scientific Inc.
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.