Report cover image

Artificial Intelligence in Diabetes Management Market by Device Type (Blood Glucose Meter, Closed Loop System, Continuous Glucose Monitor), Technology (Decision Support Systems, Machine Learning, Mobile Applications), Component, Deployment Mode, End User

Publisher 360iResearch
Published Jan 13, 2026
Length 194 Pages
SKU # IRE20720472

Description

The Artificial Intelligence in Diabetes Management Market was valued at USD 1.31 billion in 2025 and is projected to grow to USD 1.72 billion in 2026, with a CAGR of 31.66%, reaching USD 9.04 billion by 2032.

An authoritative overview of how algorithmic intelligence combined with connected devices is redefining clinical pathways and patient engagement in diabetes management

Artificial intelligence is reshaping the way diabetes is detected, monitored, and managed, bringing together clinical science, connected devices, and advanced analytics to deliver more personalized care. Over the past several years, algorithm-driven decision support, continuous monitoring, and cloud-enabled data orchestration have converged to enable care teams and people living with diabetes to act on timely, actionable insights. As a result, clinical workflows are being reframed around real-time data streams, and patient engagement is increasingly mediated through user-centric mobile applications and interoperable device ecosystems.

This executive summary synthesizes developments that matter to product leaders, payers, clinicians, and investors. It covers the technological inflection points that underpin closed-loop therapies and predictive glycemic control, the evolving commercial forces that drive procurement and reimbursement decisions, and the regulatory and privacy considerations that govern data use. It also highlights operational challenges around device integration and the human factors necessary to translate technical capability into measurable clinical outcomes. Taken together, these elements form the contemporary landscape of AI-enabled diabetes management and frame the strategic choices organizations must confront in the near term.

Key transformative inflection points reveal how device convergence, cloud analytics, and adaptive machine learning are driving continuous care and new commercial models

The landscape of diabetes care has shifted from episodic clinic visits to continuous, data-driven management, and that transformation is accelerating through a series of interrelated technical and commercial inflection points. First, device convergence is enabling tighter closed-loop control: continuous glucose monitoring systems feed real-time data to insulin delivery platforms, while machine learning algorithms refine dosing recommendations and trend forecasts. Second, the proliferation of cloud computing and mobile applications has normalized remote monitoring and telehealth, expanding care beyond traditional settings and empowering home-based self-management.

In parallel, advances in predictive analytics and decision support systems are converting raw sensor data into clinically meaningful alerts and dose recommendations, thereby reducing cognitive burden on clinicians and supporting proactive interventions. Moreover, the maturation of reinforcement and supervised learning approaches is enhancing algorithmic personalization, enabling models to adapt to individual physiology and lifestyle patterns. These technical shifts are accompanied by new commercial dynamics: strategic partnerships, software-enabled services, and outcome-based contracting are redefining vendor relationships with payers and providers. Finally, heightened attention to data governance, interoperability standards, and human-centered design is ensuring that innovation remains clinically safe and patient-centric. Consequently, organizations that integrate robust algorithmic capability with validated clinical workflows and scalable deployment models will define the next generation of diabetes care.

Assessment of how 2025 United States tariff measures reshape supply chains, regional manufacturing strategies, and the software-hardware cost equation in diabetes care

The imposition of tariffs and trade policy adjustments in the United States in 2025 has introduced a complex set of operational and strategic effects across global diabetes device and software supply chains. Import duties on electronic components and finished medical devices increase the cost exposure for manufacturers that rely on internationally sourced sensors, pumps, and circuit-level parts. Consequently, many organizations must reassess supplier contracts, renegotiate component sourcing, and accelerate qualification of alternative vendors to preserve margin and maintain product timelines. In response, a number of manufacturers are exploring regional manufacturing footprints and nearshoring strategies to reduce tariff vulnerability and shorten lead times.

These movements generate downstream impacts on pricing strategies, procurement cycles, and partnership models. For health systems and payers, higher landed costs can prompt a reevaluation of procurement priorities and a stronger emphasis on total cost of care rather than unit price alone. At the same time, device and software providers face increased pressure to demonstrate demonstrable clinical and economic value to justify sustained adoption. To manage margin compression and protect innovation pipelines, companies are shifting toward modular product architectures and software-driven differentiation that depend less on tariff-exposed hardware. Regulators and standards bodies are also adapting, placing new emphasis on supply chain transparency and component traceability. Ultimately, while tariffs create short-term cost and logistical burdens, they also catalyze supply chain resilience, local manufacturing investment, and a sharper focus on software-enabled value propositions.

Comprehensive segmentation analysis revealing how device form factors, analytical modalities, care settings, deployment choices, disease types, and components drive strategic focus

A nuanced segmentation lens clarifies where innovation and clinical demand intersect across device type, technology, end user, deployment mode, clinical type, and component architecture. When examined by device type, the market encompasses blood glucose meters, closed-loop systems, continuous glucose monitors, and insulin pumps; within blood glucose meters, distinctions between noninvasive meters and SMBG inform adoption scenarios tied to user preference and clinical accuracy, while closed-loop systems are differentiated by fully closed loop and hybrid closed loop designs that dictate automation level and clinician oversight. Continuous glucose monitoring spans intermittently scanned and real-time systems, each delivering different temporal resolution for trend analysis, and insulin delivery options include patch pumps and tubed pumps that vary in form factor, user experience, and integration complexity.

Looking at technology segmentation, cloud computing, decision support systems, machine learning, mobile applications, and predictive analytics define the functional stack. Cloud platforms, whether private or public, underpin centralized data aggregation and large-scale model training, while decision support systems that focus on alert generation or dose recommendation translate model outputs into clinical actions. Machine learning modalities such as reinforcement learning, supervised learning, and unsupervised learning play distinct roles in personalization, pattern recognition, and anomaly detection. Mobile applications across Android and iOS form the primary patient interaction layer, and predictive analytics modules focusing on glucose trend prediction and risk prediction enable proactive care planning.

End user segmentation-clinic, home care, hospital, and research institute-illustrates divergent operational requirements and procurement criteria. Clinics differentiate between specialized diabetes centers and general clinics, home care settings include remote monitoring and self-monitoring use cases, hospitals must reconcile inpatient and outpatient workflows, and research institutes span academic and private entities with differing evidence needs. Deployment mode choices between cloud based and on premise, with cloud variants like hybrid and public cloud and on-premise variants such as edge computing and server-based setups, determine latency, security, and integration trade-offs. Disease type segmentation recognizes gestational, Type 1, and Type 2 diabetes management pathways and their unique clinical protocols, while components split into hardware-pumps, sensors, wearable devices-and software-algorithms, data management, user interface-highlight where investment and differentiation are most consequential. Together, these segmentation perspectives guide where clinical validation, regulatory focus, and commercial investment should be concentrated to accelerate adoption and improve outcomes.

Regional dynamics and policy environments that shape adoption pathways, reimbursement incentives, and product localization across the Americas, EMEA, and Asia-Pacific

Regional dynamics exert significant influence over technology adoption, reimbursement approaches, regulatory expectations, and clinician workflows. In the Americas, the combination of integrated payer-provider systems, active venture financing, and a culture of rapid adoption of remote monitoring supports accelerated uptake of cloud-enabled analytics and continuous monitoring solutions. Reimbursement pathways are more mature in certain jurisdictions, which incentivizes evidence generation and vendor alignment with health economics outcomes. However, fragmented procurement practices across states and private health plans require tailored commercial strategies to achieve scale.

Across Europe, the Middle East, and Africa, heterogeneous regulatory regimes and varied healthcare infrastructure create both challenges and opportunities. Western European markets prioritize interoperability, data protection, and clinical validation, encouraging solutions that conform to rigorous standards. Meanwhile, emerging markets in the region present potential for leapfrog adoption, especially where mobile-first care models and public-private partnerships can extend access to remote monitoring. In the Asia-Pacific region, a mix of high-volume production capacity, rapid digital health adoption, and distinctive reimbursement landscapes fosters both manufacturing scale and local innovation. Policymakers and payers in this region are increasingly focused on balancing affordability with clinical efficacy, encouraging modular products and scalable software services that can be localized to meet language, workflow, and regulatory requirements.

Strategic corporate behaviors and partnership models that determine platform leadership, clinical validation trajectories, and enterprise adoption in diabetes AI

Corporate strategies in the diabetes AI ecosystem are defined by platform integration, evidence generation, partnerships, and the capacity to scale services across diverse care settings. Leading companies are investing in interoperable platforms that integrate continuous monitoring, insulin delivery, and decision support, while simultaneously developing clinical evidence through trials and real-world data studies to validate outcomes. Strategic alliances between device manufacturers, software vendors, and healthcare providers are becoming the primary vehicle for rapid market penetration, enabling bundled solutions that align with payer demands for measurable clinical and economic benefits.

At the same time, companies are differentiating through software-driven features such as advanced predictive analytics, personalized dosing algorithms, and clinician-facing workflow tools that reduce administrative burden. Mergers and acquisitions, targeted partnerships with cloud providers, and cross-sector collaborations with telehealth platforms accelerate time to market and expand addressable use cases. Competitive positioning increasingly depends on the ability to demonstrate secure data stewardship, regulatory compliance, and a proven pathway to improved patient adherence and clinical outcomes. Organizations that balance innovation with disciplined evidence generation and clear commercialization strategies will be best positioned to capture sustained clinical adoption and enterprise-level procurement.

Actionable strategic directives enabling leaders to translate algorithmic innovation into validated clinical outcomes, resilient supply chains, and scalable commercial models

Industry leaders should prioritize a set of actionable initiatives to convert technological capability into durable clinical and commercial advantage. First, invest in rigorous clinical evidence programs that pair algorithmic performance metrics with patient-centered outcomes and health economic analyses, ensuring that payers and providers can assess both clinical efficacy and value. Second, adopt modular product architectures that decouple hardware dependencies from software innovation, enabling rapid feature updates and mitigating supply chain exposure. Third, pursue regional manufacturing and supply diversification to reduce tariff and logistics risk while enabling faster regulatory submissions and localized support.

Additionally, focus on building robust data governance and interoperability frameworks that comply with privacy regulations and facilitate seamless integration with electronic health records and telehealth platforms. Cultivate strategic partnerships with payer organizations, provider networks, and patient advocacy groups to accelerate adoption through outcome-based pilots and co-developed care pathways. From a go-to-market perspective, tailor commercial models to end user needs, combining enterprise licensing for hospitals with subscription and supported-device models for home care. Finally, prioritize human-centered design in mobile and device interfaces to enhance adherence, reduce user error, and support long-term engagement, because the sustained impact of any technological advancement ultimately depends on real-world usability and clinician trust.

A transparent multi-method research approach combining primary interviews, technical assessments, literature synthesis, and scenario analysis to validate findings

This report synthesizes qualitative and quantitative inputs through a multi-method research approach designed to ensure analytical rigor and practical relevance. Primary research included in-depth interviews with clinicians, payers, product leaders, and regulatory experts to capture first-hand perspectives on clinical workflows, reimbursement priorities, and technology adoption barriers. These interviews were complemented by device-level technical reviews and software capability assessments to map functional differentials across continuous monitoring, insulin delivery, and decision support systems. Secondary research involved the systematic review of scientific literature, regulatory guidance, standards documentation, and publicly available clinical trial registries to contextualize efficacy claims and regulatory pathways.

Data triangulation and cross-validation techniques were employed throughout the research process to reconcile differing viewpoints and to strengthen the robustness of findings. The methodology also incorporated scenario analysis to evaluate the implications of supply chain disruptions, tariff changes, and shifts in reimbursement policy. Limitations of the approach are acknowledged, including variability in regional regulatory timelines and the evolving nature of machine learning validation standards. To mitigate these constraints, the research team prioritized transparency in assumptions and provided methodological appendices that detail interview participant profiles, inclusion criteria, and the evidence hierarchy used to weight findings.

Concluding synthesis emphasizing the shift to evidence-driven, software-centered diabetes care and the strategic priorities for achieving scalable clinical impact

Artificial intelligence-driven diabetes management is transitioning from proof-of-concept demonstrations to clinically integrated, user-centered care models that prioritize continuous monitoring, predictive intervention, and measurable outcomes. The interplay between device innovation, analytical sophistication, and evolving payer expectations is shaping a landscape in which software-enabled differentiation and evidence-based value propositions are increasingly decisive. At the same time, geopolitical and policy forces such as tariff changes highlight the importance of supply chain agility and regional manufacturing strategies. Organizations that align technical excellence with pragmatic commercialization plans and strong data governance will be best placed to deliver sustained improvements in patient care.

Looking ahead, the most impactful advances will come from cross-disciplinary collaboration among clinicians, engineers, and health economists, and from a relentless focus on translating algorithmic insights into simple, reliable clinical actions. As adoption scales, outcomes-driven procurement and partnership models will further incentivize solutions that demonstrably reduce complications, improve adherence, and support equitable access to high-quality diabetes care. Ultimately, the successful integration of AI into diabetes management will be judged by its capacity to improve lives at scale, not merely by technological sophistication.

Table of Contents

194 Pages
1. Preface
1.1. Objectives of the Study
1.2. Market Definition
1.3. Market Segmentation & Coverage
1.4. Years Considered for the Study
1.5. Currency Considered for the Study
1.6. Language Considered for the Study
1.7. Key Stakeholders
2. Research Methodology
2.1. Introduction
2.2. Research Design
2.2.1. Primary Research
2.2.2. Secondary Research
2.3. Research Framework
2.3.1. Qualitative Analysis
2.3.2. Quantitative Analysis
2.4. Market Size Estimation
2.4.1. Top-Down Approach
2.4.2. Bottom-Up Approach
2.5. Data Triangulation
2.6. Research Outcomes
2.7. Research Assumptions
2.8. Research Limitations
3. Executive Summary
3.1. Introduction
3.2. CXO Perspective
3.3. Market Size & Growth Trends
3.4. Market Share Analysis, 2025
3.5. FPNV Positioning Matrix, 2025
3.6. New Revenue Opportunities
3.7. Next-Generation Business Models
3.8. Industry Roadmap
4. Market Overview
4.1. Introduction
4.2. Industry Ecosystem & Value Chain Analysis
4.2.1. Supply-Side Analysis
4.2.2. Demand-Side Analysis
4.2.3. Stakeholder Analysis
4.3. Porter’s Five Forces Analysis
4.4. PESTLE Analysis
4.5. Market Outlook
4.5.1. Near-Term Market Outlook (0–2 Years)
4.5.2. Medium-Term Market Outlook (3–5 Years)
4.5.3. Long-Term Market Outlook (5–10 Years)
4.6. Go-to-Market Strategy
5. Market Insights
5.1. Consumer Insights & End-User Perspective
5.2. Consumer Experience Benchmarking
5.3. Opportunity Mapping
5.4. Distribution Channel Analysis
5.5. Pricing Trend Analysis
5.6. Regulatory Compliance & Standards Framework
5.7. ESG & Sustainability Analysis
5.8. Disruption & Risk Scenarios
5.9. Return on Investment & Cost-Benefit Analysis
6. Cumulative Impact of United States Tariffs 2025
7. Cumulative Impact of Artificial Intelligence 2025
8. Artificial Intelligence in Diabetes Management Market, by Device Type
8.1. Blood Glucose Meter
8.1.1. Non Invasive Bg Meter
8.1.2. Smbg
8.2. Closed Loop System
8.2.1. Fully Closed Loop
8.2.2. Hybrid Closed Loop
8.3. Continuous Glucose Monitor
8.3.1. Intermittently Scanned Cgm
8.3.2. Real Time Cgm
8.4. Insulin Pump
8.4.1. Patch Pump
8.4.2. Tubed Pump
9. Artificial Intelligence in Diabetes Management Market, by Technology
9.1. Decision Support Systems
9.1.1. Alert Generation
9.1.2. Dose Recommendation
9.2. Machine Learning
9.3. Mobile Applications
9.4. Predictive Analytics
9.4.1. Glucose Trend Prediction
9.4.2. Risk Prediction
10. Artificial Intelligence in Diabetes Management Market, by Component
10.1. Hardware
10.1.1. Pumps
10.1.2. Sensors
10.1.3. Wearable Devices
10.2. Software
10.2.1. Algorithms
10.2.2. Data Management
10.2.3. User Interface
11. Artificial Intelligence in Diabetes Management Market, by Deployment Mode
11.1. Cloud Based
11.1.1. Hybrid Cloud
11.1.2. Public Cloud
11.2. On Premise
11.2.1. Edge Computing
11.2.2. Server Based
12. Artificial Intelligence in Diabetes Management Market, by End User
12.1. Clinic
12.1.1. Diabetes Center
12.1.2. General Clinic
12.2. Home Care
12.2.1. Remote Monitoring
12.2.2. Self Monitoring
12.3. Hospital
12.3.1. Inpatient
12.3.2. Outpatient
12.4. Research Institute
12.4.1. Academic
12.4.2. Private
13. Artificial Intelligence in Diabetes Management Market, by Region
13.1. Americas
13.1.1. North America
13.1.2. Latin America
13.2. Europe, Middle East & Africa
13.2.1. Europe
13.2.2. Middle East
13.2.3. Africa
13.3. Asia-Pacific
14. Artificial Intelligence in Diabetes Management Market, by Group
14.1. ASEAN
14.2. GCC
14.3. European Union
14.4. BRICS
14.5. G7
14.6. NATO
15. Artificial Intelligence in Diabetes Management Market, by Country
15.1. United States
15.2. Canada
15.3. Mexico
15.4. Brazil
15.5. United Kingdom
15.6. Germany
15.7. France
15.8. Russia
15.9. Italy
15.10. Spain
15.11. China
15.12. India
15.13. Japan
15.14. Australia
15.15. South Korea
16. United States Artificial Intelligence in Diabetes Management Market
17. China Artificial Intelligence in Diabetes Management Market
18. Competitive Landscape
18.1. Market Concentration Analysis, 2025
18.1.1. Concentration Ratio (CR)
18.1.2. Herfindahl Hirschman Index (HHI)
18.2. Recent Developments & Impact Analysis, 2025
18.3. Product Portfolio Analysis, 2025
18.4. Benchmarking Analysis, 2025
18.5. Abbott Laboratories
18.6. Apple Inc.
18.7. Bigfoot Biomedical, Inc.
18.8. Dexcom, Inc.
18.9. Diabeloop SA
18.10. Eyenuk, Inc.
18.11. F. Hoffmann-La Roche Ltd
18.12. Glooko Inc.
18.13. Google LLC by Alphabet Inc.
18.14. Insulet Corporation
18.15. International Business Machines Corporation
18.16. Livongo Health, Inc.
18.17. Medtronic plc
18.18. Omada Health, Inc.
18.19. Tandem Diabetes Care, Inc.
18.20. Teladoc Health, Inc.
18.21. Tidepool Inc.
18.22. Virta Health Corp.
18.23. Wellthy Therapeutics Pvt. Ltd.
FIGURE 1. GLOBAL ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SIZE, 2018-2032 (USD MILLION)
FIGURE 2. GLOBAL ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SHARE, BY KEY PLAYER, 2025
FIGURE 3. GLOBAL ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET, FPNV POSITIONING MATRIX, 2025
FIGURE 4. GLOBAL ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SIZE, BY DEVICE TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
FIGURE 5. GLOBAL ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SIZE, BY TECHNOLOGY, 2025 VS 2026 VS 2032 (USD MILLION)
FIGURE 6. GLOBAL ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SIZE, BY COMPONENT, 2025 VS 2026 VS 2032 (USD MILLION)
FIGURE 7. GLOBAL ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SIZE, BY DEPLOYMENT MODE, 2025 VS 2026 VS 2032 (USD MILLION)
FIGURE 8. GLOBAL ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SIZE, BY END USER, 2025 VS 2026 VS 2032 (USD MILLION)
FIGURE 9. GLOBAL ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
FIGURE 10. GLOBAL ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
FIGURE 11. GLOBAL ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
FIGURE 12. UNITED STATES ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SIZE, 2018-2032 (USD MILLION)
FIGURE 13. CHINA ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT MARKET SIZE, 2018-2032 (USD MILLION)
How Do Licenses Work?
Request A Sample
Head shot

Questions or Comments?

Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.