Artificial Intelligence in Cybersecurity Market by Offering Type (Services, Solution), Technology (Computer Vision, Machine Learning (ML), Natural Language Processing (NLP)), Security Type, Deployment Mode, Application, End-User - Global Forecast 2025-203
Description
The Artificial Intelligence in Cybersecurity Market was valued at USD 23.12 billion in 2024 and is projected to grow to USD 28.51 billion in 2025, with a CAGR of 24.81%, reaching USD 136.18 billion by 2032.
How artificial intelligence is reshaping detection, response, and risk governance across enterprise security operations amid accelerating digital transformation
The convergence of artificial intelligence and cybersecurity has evolved from experimental pilots to operational deployments across enterprise environments, reshaping how organizations detect, prevent, and respond to malicious activity. Advances in machine learning, neural architectures, and natural language processing are enabling systems to analyze complex telemetry at machine speed, while computer vision and predictive analytics are extending protection to novel attack surfaces. As cyber adversaries incorporate automation and sophisticated evasion techniques, defenders are increasingly relying on AI-driven capabilities to sustain resilience, prioritize incidents, and reduce mean time to detection and response.
This introduction frames the current environment by highlighting the interplay between high-velocity data, increasingly distributed digital infrastructures, and the strategic need to embed intelligence throughout security operations. The narrative emphasizes that successful adoption requires not only technology selection but also governance, data strategy, and talent development. Organizations that align AI capabilities with risk appetite and regulatory obligations are positioned to translate technical advances into measurable reductions in exposure and operational friction. The following sections explore the major shifts, policy dynamics, segmentation nuances, regional differentiators, vendor behaviors, recommended actions, and the research approach underpinning these findings.
Pivotal industry transformations driven by advanced AI capabilities, cloud-native infrastructure proliferation, and the industrialization of sophisticated cyber threats
The landscape of cybersecurity has undergone transformative shifts driven by three converging forces: the maturation of AI techniques, the proliferation of cloud-native infrastructure, and the industrialization of cybercrime. First, AI models have transitioned from narrow, signature-based tools to probabilistic systems capable of contextual analysis across multiple data modalities. This shift has elevated the role of behavior-based detection and adversary modeling, reducing reliance on static indicators and enabling more adaptive defense strategies. Second, cloud adoption and containerized workloads have fragmented traditional perimeters, prompting architectures that integrate AI to secure workloads, identities, and data flows in real time. Third, adversaries’ access to commoditized attack tooling and AI-assisted tradecraft has necessitated a defensive posture that emphasizes automation, threat intelligence fusion, and rapidly adjustable response playbooks.
In parallel, regulatory and privacy constraints have influenced data handling and model training practices, while open-source communities and industry consortia continue to accelerate capability diffusion. These systemic shifts demand that security leaders balance rapid innovation with rigorous validation, explainability, and operational integration. Transitional investments that prioritize observability, model governance, and collaboration between security and data science functions are proving decisive in turning advanced algorithms into reliable security outcomes.
Policy-driven procurement dynamics and supply chain adjustments influencing vendor sourcing, deployment strategies, and development pipelines in AI-enabled cybersecurity
Recent policy measures in the United States, including tariff adjustments and export controls enacted or signaled for 2025, have begun to influence supply chains for AI-enabled cybersecurity solutions, particularly those that depend on specialized hardware and cross-border data flows. Cumulative tariff implications have increased procurement consideration complexity for organizations that source accelerators, appliances, and integrated systems from international suppliers. As a result, procurement teams are re-evaluating total cost of ownership, vendor diversification strategies, and the balance between off-the-shelf appliances and software-centric or cloud-hosted alternatives.
At the same time, export control nuances affecting model weights, pre-trained systems, and certain cryptographic technologies have encouraged regionalization of development and deployment pipelines. This regionalization has consequences for interoperability, compliance overhead, and the pace at which advanced features are rolled out in different jurisdictions. Organizations are responding by strengthening contractual terms, investing in vendor risk management, and accelerating engagements with domestic partners for critical components. Ultimately, these policy shifts reinforce the importance of flexible architectures, software abstraction layers, and robust validation practices so that security capabilities remain resilient to supply chain and policy-induced disruptions.
Segment-specific adoption dynamics and capability priorities across offerings, technologies, security domains, deployment modes, applications, and end-user verticals
A granular segmentation lens reveals how adoption patterns and capability priorities vary across offering types, technologies, security domains, deployment modes, applications, and end-user verticals. Based on offering type, services continue to complement solutions as professional services, managed detection, and response engagements help bridge capability gaps and accelerate outcomes. Based on technology, the landscape spans computer vision, machine learning, natural language processing, neural networks, predictive analytics, and robotic process automation, each contributing to distinct functional strengths such as anomaly detection, phishing identification, or automation of playbooks. Based on security type, the focus areas include application security, cloud security, data security, endpoint security, identity and access management, network security, and threat intelligence, where integration across domains is increasingly critical to avoid blind spots. Based on deployment mode, cloud and on-premise options reflect trade-offs between agility, data residency, and control, prompting hybrid approaches in many enterprise environments.
Based on application, deployments range from endpoint protection, fraud detection, identity and access management, malware detection, network monitoring and defense, security automation and orchestration, threat intelligence and management, to vulnerability management. Fraud detection efforts are further differentiated across financial fraud detection, identity theft prevention, and payment fraud detection, necessitating specialized models and domain-specific datasets. Malware detection similarly bifurcates into behavioral, heuristic-based, and signature-based approaches that coexist to deliver layered defenses. Based on end-user, adoption trends and use-case priorities vary across BFSI, education, energy and utilities, entertainment and media, government and defense, healthcare, IT and telecom, manufacturing, and retail and e-commerce, with each vertical balancing regulatory obligations, threat profiles, and operational constraints in distinct ways.
How regional regulatory, talent, and infrastructure differences drive differentiated adoption, compliance posture, and partnership strategies for AI security implementations
Regional dynamics materially shape how AI security technologies are adopted, integrated, and governed across different operational environments. In the Americas, organizations tend to prioritize rapid innovation cycles, strong public-private information sharing, and broad investment in managed services and cloud-native security platforms, while also navigating data privacy regulations and procurement scrutiny. Europe, the Middle East & Africa exhibit heterogeneous adoption patterns driven by stringent data protection regimes, varied maturity of national cybersecurity capacities, and localized vendor ecosystems that emphasize compliance and data residency. Regulatory frameworks in this region often necessitate careful model governance and explainability, which in turn guides procurement toward vendors that can demonstrate robust controls and localized support.
Asia-Pacific reflects a mix of advanced adopters and rapidly digitizing markets, where cloud-first strategies, high mobile usage, and strong interest in AI-driven automation spur demand for integrated threat intelligence, identity protection, and fraud prevention. Cross-border data flows and diverse legal regimes encourage hybrid deployment models and partnerships between global vendors and regional integrators. Across all regions, the interplay between regulatory landscapes, supply chain considerations, and talent availability determines how organizations prioritize investments, select partners, and sequence capability rollouts to meet both resilience and growth objectives.
Vendor strategies and partnership ecosystems emphasizing modular productization, explainable AI, and managed service integration to accelerate enterprise security outcomes
Leading vendors and integrators are converging on several strategic behaviors that shape competitive dynamics. Companies are broadening portfolios through modular architectures that combine detection engines, orchestration layers, and managed services to offer end-to-end value propositions. Partnerships between platform providers and specialist analytics firms are accelerating time-to-value by integrating niche models and domain-trained datasets into broader security stacks. Furthermore, there is a notable trend towards productizing research outputs and packaging explainable AI features, which addresses customer demands for transparency and auditability in high-consequence environments.
At the same time, investment in talent and operational maturity is becoming a differentiator: firms that offer host-based telemetry ingestion, customizable model tuning, and collaborative SOC enablement tools are gaining traction. Open frameworks and community-driven intelligence are influencing roadmaps, while commercial providers balance this openness with proprietary enhancements that improve precision and operational efficiency. For buyers, these vendor behaviors translate into a richer set of choices but also require careful vendor evaluation around integration, lifecycle management, and the ability to meet sector-specific compliance requirements.
Practical governance, data strategy, and operational steps that security leaders should implement to deploy reliable, auditable, and business-aligned AI defenses
Industry leaders should pursue a deliberate approach to embedding AI into cybersecurity that aligns capability development with governance, talent, and operational readiness. Begin by establishing clear objectives for AI adoption that connect detection and response improvements to specific business risk metrics, ensuring that measurement frameworks are in place to evaluate effectiveness and guide iterative model refinement. Invest in data architecture and labeling practices that prioritize quality, lineage, and privacy-preserving techniques so models are trained on representative and compliant datasets. Parallel to technical investments, implement model governance policies that require explainability thresholds, continuous validation, and mechanisms to monitor for concept drift and adversarial manipulation.
Operationally, prioritize hybrid deployment patterns that preserve control over sensitive workloads while leveraging cloud-based analytic scale for non-sensitive telemetry. Expand use of managed detection and response services where internal maturity is limited, but retain capabilities for high-fidelity alert investigation and playbook customization. From a procurement perspective, demand clear SLAs for model updates, transparency on third-party data sources, and contractual protections for supply chain changes. Finally, cultivate multidisciplinary teams that blend security analysts, data scientists, and compliance professionals to ensure that AI-driven defenses are robust, explainable, and aligned with enterprise risk appetites.
A rigorous evidence synthesis combining practitioner interviews, technical disclosures, and scenario analysis to validate adoption patterns and operational challenges in AI security
The research underpinning this analysis combined a structured review of contemporary literature, vendor disclosures, and practitioner interviews with a methodical synthesis of technical and operational signals. Primary research included conversations with security leaders, incident responders, and data scientists across multiple industries to capture lived operational constraints, integration experiences, and governance practices. Secondary research involved an evaluation of technology roadmaps, white papers, and regulatory guidance to triangulate observed trends and validate technical capabilities against public disclosures. The synthesis emphasized evidence triangulation, cross-validation of claims, and mapping of capability narratives to real-world deployment patterns.
Methodologically, the approach prioritized qualitative depth where quantitative comparators were not uniformly available, while ensuring reproducibility through clearly documented inclusion criteria and source provenance. The analysis also incorporated scenario-based thinking to examine how supply chain shifts, policy changes, and threat actor innovation could influence strategic choices. Where applicable, findings were stress-tested with subject-matter experts to expose assumptions and surface alternative interpretations, resulting in a balanced narrative that supports decision-making while acknowledging uncertainty in rapidly evolving technical domains.
Synthesis of capability, governance, and policy imperatives that leaders must align to translate AI capabilities into resilient, accountable cybersecurity operations
In summary, artificial intelligence is now a foundational pillar in modern cybersecurity strategies, enabling faster detection, more precise response, and scalable orchestration of defensive playbooks. The maturation of diverse AI techniques-spanning machine learning, NLP, neural networks, and predictive analytics-has produced tangible operational gains, but realizing those gains requires intentional investment in data governance, model oversight, and cross-functional operational integration. Policy shifts, including tariff and export considerations, introduce new procurement and supply chain complexities that must be managed through flexible architectures and strengthened vendor risk controls.
Leaders who combine disciplined governance, rigorous validation, and partnership-oriented procurement will be best placed to convert AI capabilities into resilient security outcomes. The path forward demands not only technology adoption but also cultural change within security operations, a commitment to transparent model practices, and a pragmatic approach to hybrid deployments. By aligning technical innovation with risk management and regulatory obligations, organizations can leverage AI to reduce exposure and improve operational efficiency without sacrificing control or accountability.
Please Note: PDF & Excel + Online Access - 1 Year
How artificial intelligence is reshaping detection, response, and risk governance across enterprise security operations amid accelerating digital transformation
The convergence of artificial intelligence and cybersecurity has evolved from experimental pilots to operational deployments across enterprise environments, reshaping how organizations detect, prevent, and respond to malicious activity. Advances in machine learning, neural architectures, and natural language processing are enabling systems to analyze complex telemetry at machine speed, while computer vision and predictive analytics are extending protection to novel attack surfaces. As cyber adversaries incorporate automation and sophisticated evasion techniques, defenders are increasingly relying on AI-driven capabilities to sustain resilience, prioritize incidents, and reduce mean time to detection and response.
This introduction frames the current environment by highlighting the interplay between high-velocity data, increasingly distributed digital infrastructures, and the strategic need to embed intelligence throughout security operations. The narrative emphasizes that successful adoption requires not only technology selection but also governance, data strategy, and talent development. Organizations that align AI capabilities with risk appetite and regulatory obligations are positioned to translate technical advances into measurable reductions in exposure and operational friction. The following sections explore the major shifts, policy dynamics, segmentation nuances, regional differentiators, vendor behaviors, recommended actions, and the research approach underpinning these findings.
Pivotal industry transformations driven by advanced AI capabilities, cloud-native infrastructure proliferation, and the industrialization of sophisticated cyber threats
The landscape of cybersecurity has undergone transformative shifts driven by three converging forces: the maturation of AI techniques, the proliferation of cloud-native infrastructure, and the industrialization of cybercrime. First, AI models have transitioned from narrow, signature-based tools to probabilistic systems capable of contextual analysis across multiple data modalities. This shift has elevated the role of behavior-based detection and adversary modeling, reducing reliance on static indicators and enabling more adaptive defense strategies. Second, cloud adoption and containerized workloads have fragmented traditional perimeters, prompting architectures that integrate AI to secure workloads, identities, and data flows in real time. Third, adversaries’ access to commoditized attack tooling and AI-assisted tradecraft has necessitated a defensive posture that emphasizes automation, threat intelligence fusion, and rapidly adjustable response playbooks.
In parallel, regulatory and privacy constraints have influenced data handling and model training practices, while open-source communities and industry consortia continue to accelerate capability diffusion. These systemic shifts demand that security leaders balance rapid innovation with rigorous validation, explainability, and operational integration. Transitional investments that prioritize observability, model governance, and collaboration between security and data science functions are proving decisive in turning advanced algorithms into reliable security outcomes.
Policy-driven procurement dynamics and supply chain adjustments influencing vendor sourcing, deployment strategies, and development pipelines in AI-enabled cybersecurity
Recent policy measures in the United States, including tariff adjustments and export controls enacted or signaled for 2025, have begun to influence supply chains for AI-enabled cybersecurity solutions, particularly those that depend on specialized hardware and cross-border data flows. Cumulative tariff implications have increased procurement consideration complexity for organizations that source accelerators, appliances, and integrated systems from international suppliers. As a result, procurement teams are re-evaluating total cost of ownership, vendor diversification strategies, and the balance between off-the-shelf appliances and software-centric or cloud-hosted alternatives.
At the same time, export control nuances affecting model weights, pre-trained systems, and certain cryptographic technologies have encouraged regionalization of development and deployment pipelines. This regionalization has consequences for interoperability, compliance overhead, and the pace at which advanced features are rolled out in different jurisdictions. Organizations are responding by strengthening contractual terms, investing in vendor risk management, and accelerating engagements with domestic partners for critical components. Ultimately, these policy shifts reinforce the importance of flexible architectures, software abstraction layers, and robust validation practices so that security capabilities remain resilient to supply chain and policy-induced disruptions.
Segment-specific adoption dynamics and capability priorities across offerings, technologies, security domains, deployment modes, applications, and end-user verticals
A granular segmentation lens reveals how adoption patterns and capability priorities vary across offering types, technologies, security domains, deployment modes, applications, and end-user verticals. Based on offering type, services continue to complement solutions as professional services, managed detection, and response engagements help bridge capability gaps and accelerate outcomes. Based on technology, the landscape spans computer vision, machine learning, natural language processing, neural networks, predictive analytics, and robotic process automation, each contributing to distinct functional strengths such as anomaly detection, phishing identification, or automation of playbooks. Based on security type, the focus areas include application security, cloud security, data security, endpoint security, identity and access management, network security, and threat intelligence, where integration across domains is increasingly critical to avoid blind spots. Based on deployment mode, cloud and on-premise options reflect trade-offs between agility, data residency, and control, prompting hybrid approaches in many enterprise environments.
Based on application, deployments range from endpoint protection, fraud detection, identity and access management, malware detection, network monitoring and defense, security automation and orchestration, threat intelligence and management, to vulnerability management. Fraud detection efforts are further differentiated across financial fraud detection, identity theft prevention, and payment fraud detection, necessitating specialized models and domain-specific datasets. Malware detection similarly bifurcates into behavioral, heuristic-based, and signature-based approaches that coexist to deliver layered defenses. Based on end-user, adoption trends and use-case priorities vary across BFSI, education, energy and utilities, entertainment and media, government and defense, healthcare, IT and telecom, manufacturing, and retail and e-commerce, with each vertical balancing regulatory obligations, threat profiles, and operational constraints in distinct ways.
How regional regulatory, talent, and infrastructure differences drive differentiated adoption, compliance posture, and partnership strategies for AI security implementations
Regional dynamics materially shape how AI security technologies are adopted, integrated, and governed across different operational environments. In the Americas, organizations tend to prioritize rapid innovation cycles, strong public-private information sharing, and broad investment in managed services and cloud-native security platforms, while also navigating data privacy regulations and procurement scrutiny. Europe, the Middle East & Africa exhibit heterogeneous adoption patterns driven by stringent data protection regimes, varied maturity of national cybersecurity capacities, and localized vendor ecosystems that emphasize compliance and data residency. Regulatory frameworks in this region often necessitate careful model governance and explainability, which in turn guides procurement toward vendors that can demonstrate robust controls and localized support.
Asia-Pacific reflects a mix of advanced adopters and rapidly digitizing markets, where cloud-first strategies, high mobile usage, and strong interest in AI-driven automation spur demand for integrated threat intelligence, identity protection, and fraud prevention. Cross-border data flows and diverse legal regimes encourage hybrid deployment models and partnerships between global vendors and regional integrators. Across all regions, the interplay between regulatory landscapes, supply chain considerations, and talent availability determines how organizations prioritize investments, select partners, and sequence capability rollouts to meet both resilience and growth objectives.
Vendor strategies and partnership ecosystems emphasizing modular productization, explainable AI, and managed service integration to accelerate enterprise security outcomes
Leading vendors and integrators are converging on several strategic behaviors that shape competitive dynamics. Companies are broadening portfolios through modular architectures that combine detection engines, orchestration layers, and managed services to offer end-to-end value propositions. Partnerships between platform providers and specialist analytics firms are accelerating time-to-value by integrating niche models and domain-trained datasets into broader security stacks. Furthermore, there is a notable trend towards productizing research outputs and packaging explainable AI features, which addresses customer demands for transparency and auditability in high-consequence environments.
At the same time, investment in talent and operational maturity is becoming a differentiator: firms that offer host-based telemetry ingestion, customizable model tuning, and collaborative SOC enablement tools are gaining traction. Open frameworks and community-driven intelligence are influencing roadmaps, while commercial providers balance this openness with proprietary enhancements that improve precision and operational efficiency. For buyers, these vendor behaviors translate into a richer set of choices but also require careful vendor evaluation around integration, lifecycle management, and the ability to meet sector-specific compliance requirements.
Practical governance, data strategy, and operational steps that security leaders should implement to deploy reliable, auditable, and business-aligned AI defenses
Industry leaders should pursue a deliberate approach to embedding AI into cybersecurity that aligns capability development with governance, talent, and operational readiness. Begin by establishing clear objectives for AI adoption that connect detection and response improvements to specific business risk metrics, ensuring that measurement frameworks are in place to evaluate effectiveness and guide iterative model refinement. Invest in data architecture and labeling practices that prioritize quality, lineage, and privacy-preserving techniques so models are trained on representative and compliant datasets. Parallel to technical investments, implement model governance policies that require explainability thresholds, continuous validation, and mechanisms to monitor for concept drift and adversarial manipulation.
Operationally, prioritize hybrid deployment patterns that preserve control over sensitive workloads while leveraging cloud-based analytic scale for non-sensitive telemetry. Expand use of managed detection and response services where internal maturity is limited, but retain capabilities for high-fidelity alert investigation and playbook customization. From a procurement perspective, demand clear SLAs for model updates, transparency on third-party data sources, and contractual protections for supply chain changes. Finally, cultivate multidisciplinary teams that blend security analysts, data scientists, and compliance professionals to ensure that AI-driven defenses are robust, explainable, and aligned with enterprise risk appetites.
A rigorous evidence synthesis combining practitioner interviews, technical disclosures, and scenario analysis to validate adoption patterns and operational challenges in AI security
The research underpinning this analysis combined a structured review of contemporary literature, vendor disclosures, and practitioner interviews with a methodical synthesis of technical and operational signals. Primary research included conversations with security leaders, incident responders, and data scientists across multiple industries to capture lived operational constraints, integration experiences, and governance practices. Secondary research involved an evaluation of technology roadmaps, white papers, and regulatory guidance to triangulate observed trends and validate technical capabilities against public disclosures. The synthesis emphasized evidence triangulation, cross-validation of claims, and mapping of capability narratives to real-world deployment patterns.
Methodologically, the approach prioritized qualitative depth where quantitative comparators were not uniformly available, while ensuring reproducibility through clearly documented inclusion criteria and source provenance. The analysis also incorporated scenario-based thinking to examine how supply chain shifts, policy changes, and threat actor innovation could influence strategic choices. Where applicable, findings were stress-tested with subject-matter experts to expose assumptions and surface alternative interpretations, resulting in a balanced narrative that supports decision-making while acknowledging uncertainty in rapidly evolving technical domains.
Synthesis of capability, governance, and policy imperatives that leaders must align to translate AI capabilities into resilient, accountable cybersecurity operations
In summary, artificial intelligence is now a foundational pillar in modern cybersecurity strategies, enabling faster detection, more precise response, and scalable orchestration of defensive playbooks. The maturation of diverse AI techniques-spanning machine learning, NLP, neural networks, and predictive analytics-has produced tangible operational gains, but realizing those gains requires intentional investment in data governance, model oversight, and cross-functional operational integration. Policy shifts, including tariff and export considerations, introduce new procurement and supply chain complexities that must be managed through flexible architectures and strengthened vendor risk controls.
Leaders who combine disciplined governance, rigorous validation, and partnership-oriented procurement will be best placed to convert AI capabilities into resilient security outcomes. The path forward demands not only technology adoption but also cultural change within security operations, a commitment to transparent model practices, and a pragmatic approach to hybrid deployments. By aligning technical innovation with risk management and regulatory obligations, organizations can leverage AI to reduce exposure and improve operational efficiency without sacrificing control or accountability.
Please Note: PDF & Excel + Online Access - 1 Year
Table of Contents
185 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Integration of generative AI models for real-time dynamic threat detection across network environments
- 5.2. Autonomous incident response systems leveraging reinforcement learning to mitigate cyberattacks
- 5.3. Explainable AI frameworks for regulatory compliance in enterprise security operations centers
- 5.4. Deep learning–driven anomaly detection for uncovering advanced persistent threats in cloud infrastructures
- 5.5. AI-powered identity and access management with continuous behavioral risk scoring
- 5.6. Machine learning–based predictive vulnerability management for proactive patch prioritization
- 5.7. Adversarial machine learning defenses to protect models from poisoning and evasion attacks
- 5.8. Zero trust architecture enhanced by AI analytics for adaptive network segmentation and policy enforcement
- 5.9. Zero trust security guided by AI behavioral analytics across hybrid cloud environments
- 5.10. Generative AI models for automated vulnerability discovery and patch prioritization
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. Artificial Intelligence in Cybersecurity Market, by Offering Type
- 8.1. Services
- 8.2. Solution
- 9. Artificial Intelligence in Cybersecurity Market, by Technology
- 9.1. Computer Vision
- 9.2. Machine Learning (ML)
- 9.3. Natural Language Processing (NLP)
- 9.4. Neural Networks
- 9.5. Predictive Analytics
- 9.6. Robotic Process Automation (RPA)
- 10. Artificial Intelligence in Cybersecurity Market, by Security Type
- 10.1. Application Security
- 10.2. Cloud Security
- 10.3. Data Security
- 10.4. Endpoint Security
- 10.5. Identity and Access Management (IAM)
- 10.6. Network Security
- 10.7. Threat Intelligence
- 11. Artificial Intelligence in Cybersecurity Market, by Deployment Mode
- 11.1. Cloud
- 11.2. On-Premise
- 12. Artificial Intelligence in Cybersecurity Market, by Application
- 12.1. Endpoint Protection
- 12.2. Fraud Detection
- 12.2.1. Financial Fraud Detection
- 12.2.2. Identity Theft Prevention
- 12.2.3. Payment Fraud Detection
- 12.3. Identity & Access Management (IAM)
- 12.4. Malware Detection
- 12.4.1. Behavioral Malware Detection
- 12.4.2. Heuristic-Based Malware Detection
- 12.4.3. Signature-Based Malware Detection
- 12.5. Network Monitoring & Defense
- 12.6. Security Automation & Orchestration
- 12.7. Threat Intelligence & Management
- 12.8. Vulnerability Management
- 13. Artificial Intelligence in Cybersecurity Market, by End-User
- 13.1. BFSI
- 13.2. Education
- 13.3. Energy & Utilities
- 13.4. Entertainment & Media
- 13.5. Government & Defense
- 13.6. Healthcare
- 13.7. IT & Telecom
- 13.8. Manufacturing
- 13.9. Retail & E-commerce
- 14. Artificial Intelligence in Cybersecurity Market, by Region
- 14.1. Americas
- 14.1.1. North America
- 14.1.2. Latin America
- 14.2. Europe, Middle East & Africa
- 14.2.1. Europe
- 14.2.2. Middle East
- 14.2.3. Africa
- 14.3. Asia-Pacific
- 15. Artificial Intelligence in Cybersecurity Market, by Group
- 15.1. ASEAN
- 15.2. GCC
- 15.3. European Union
- 15.4. BRICS
- 15.5. G7
- 15.6. NATO
- 16. Artificial Intelligence in Cybersecurity Market, by Country
- 16.1. United States
- 16.2. Canada
- 16.3. Mexico
- 16.4. Brazil
- 16.5. United Kingdom
- 16.6. Germany
- 16.7. France
- 16.8. Russia
- 16.9. Italy
- 16.10. Spain
- 16.11. China
- 16.12. India
- 16.13. Japan
- 16.14. Australia
- 16.15. South Korea
- 17. Competitive Landscape
- 17.1. Market Share Analysis, 2024
- 17.2. FPNV Positioning Matrix, 2024
- 17.3. Competitive Analysis
- 17.3.1. Acalvio Technologies, Inc.
- 17.3.2. Advanced Micro Devices, Inc.
- 17.3.3. Amazon Web Services, Inc.
- 17.3.4. BitSight Technologies, Inc.
- 17.3.5. BlackBerry Limited
- 17.3.6. Capgemini Services SAS
- 17.3.7. Continental AG
- 17.3.8. Darktrace Holdings Limited
- 17.3.9. Dassault Systèmes S.E.
- 17.3.10. Deep Instinct Ltd.
- 17.3.11. Feedzai
- 17.3.12. Gen Digital Inc.
- 17.3.13. High-Tech Bridge SA
- 17.3.14. Infosys Limited
- 17.3.15. Intel Corporation
- 17.3.16. International Business Machines Corporation
- 17.3.17. Micron Technology, Inc.
- 17.3.18. Nozomi Networks Inc.
- 17.3.19. NVIDIA Corporation
- 17.3.20. Samsung Electronics Co., Ltd.
- 17.3.21. Securonix, Inc.
- 17.3.22. Sentinelone Inc.
- 17.3.23. SparkCognition Inc.
- 17.3.24. Tenable, Inc.
- 17.3.25. Vectra AI, Inc.
- 17.3.26. Wipro Limited
- 17.3.27. Zimperium, Inc.
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.


