Animal Model Market by Animal Type (Nonrodents, Rodents), Model Type (Disease Models, Genetically Engineered Models, Pharmacological Models), Application, End User - Global Forecast 2025-2032
Description
The Animal Model Market was valued at USD 3.16 billion in 2024 and is projected to grow to USD 3.42 billion in 2025, with a CAGR of 8.28%, reaching USD 5.98 billion by 2032.
A concise orienting narrative describing how recent scientific advances and regulatory expectations are reshaping preclinical model selection and translational strategy
The animal model landscape underpins translational science and preclinical development across pharmaceutical, biotechnology, and academic research settings. In recent years, the sector has experienced rapid technological maturation driven by advances in genetic engineering, refined surgical techniques, and more rigorous standards for pharmacokinetic and toxicology evaluation. These developments have reshaped how experimental models are selected, validated, and integrated into development pipelines, while raising new considerations for ethical review, reproducibility, and regulatory dialogue.
Consequently, organizations that rely on high-quality in vivo data now face complex trade-offs between model fidelity, throughput, and regulatory alignment. Decision-makers must weigh the strengths and limitations of rodent and nonrodent systems in the context of therapeutic modality, target biology, and translational intent. In parallel, increasing scrutiny on study design and data integrity has elevated the role of standardized protocols, centralized phenotyping platforms, and third-party quality assurance, making the choice of partners and suppliers a strategic determinant of preclinical success.
How converging technological innovations, ethical expectations, and regulatory guidance are accelerating a shift toward more translationally relevant preclinical models
Transformative shifts in the animal model ecosystem are being driven by converging technological, ethical, and regulatory currents that change how preclinical evidence is generated and interpreted. The proliferation of genetically engineered models, particularly CRISPR-based approaches, has expanded the experimental palette and enabled more precise disease recapitulation, while refinements in pharmacological and surgical models have improved construct and face validity for complex indications. At the same time, automated phenotyping and digital data capture have begun to address reproducibility concerns by standardizing endpoints and enabling deeper longitudinal analysis.
Ethical evolution is also a significant driver of change. Heightened expectations for welfare, the push toward the 3Rs-replace, reduce, refine-and institutional commitments to transparency have prompted organizations to adopt alternative experimental designs and enhanced enrichment protocols. Regulatory agencies have responded with more detailed guidance on model selection, data quality, and the acceptability of novel endpoints, creating an environment where scientific rigor and ethical practice are mutually reinforcing. Together, these forces are accelerating a shift from convenience-driven model selection to mission-aligned strategies that prioritize translational relevance and regulatory defensibility.
Evaluating the cumulative operational and strategic effects of evolving United States tariff dynamics on preclinical sourcing, continuity, and program resilience
Recent trade policy developments, including tariff adjustments and customs reviews, have introduced new considerations for procurement, supply chain resilience, and cost management in preclinical research operations. Tariff changes can accentuate the complexity of sourcing specialized animals, equipment, and reagents from international suppliers, thereby incentivizing organizations to reassess vendor mixes and contractual terms. In practice, procurement teams are increasingly evaluating total landed costs, lead times, and contingency options to reduce exposure to cross-border tariff volatility and to maintain continuity of studies with fixed timelines.
Beyond direct cost implications, tariff-related disruptions can influence strategic sourcing decisions that affect scientific timelines. For example, longer lead times for specialty animals or imported diagnostic kits may prompt shifts toward in-house breeding programs or local supplier development, which in turn require capital investment and operational capability building. These adjustments carry implications for study design and partner selection, as institutions balance the desire for stable supply chains with the need to preserve model quality and regulatory traceability. Consequently, the cumulative impact of tariff dynamics is felt not only in procurement budgets but also across program risk profiles and the agility of translational pipelines.
Deep segmentation analysis that clarifies how animal type, model design, application area, and end user priorities drive distinct operational and scientific requirements
Effective segmentation analysis reveals how model selection and operational priorities vary across the full spectrum of biological systems and experimental approaches. When studies are examined by animal type, distinctions between nonrodents and rodents become apparent: nonrodent categories such as dogs, nonhuman primates, and rabbits frequently serve projects requiring closer physiological similarity to humans and may be prioritized for late-stage safety and translational pharmacology, while rodent categories including hamsters and guinea pigs, mice, and rats are often the first-line choice for mechanistic studies, high-throughput screening, and genetic interrogation. These differences influence facility requirements, ethical oversight intensity, and the scale of breeding or vendor partnerships required to support sustained research activity.
Model type further stratifies research needs and methodological rigor. Disease models, genetically engineered models, pharmacological models, and surgical models each bring distinct validation pathways and endpoint considerations. Within genetically engineered models, techniques such as CRISPR models, knock-in models, knockout models, and transgenic models present varying timelines and characterization demands, which affect study reproducibility and regulatory acceptability. Application-driven segmentation-spanning ADME and PK studies, disease research, drug discovery and development, and toxicology assessment-shapes experimental design priorities, required analytical capabilities, and data reporting standards. Finally, end user segmentation highlights divergent service and infrastructure expectations across academic and research institutes, contract research organizations, hospitals and diagnostic laboratories, and pharmaceutical and biotechnology companies, with each group placing different emphases on throughput, customization, and compliance support.
Regional dynamics and regulatory nuance across the Americas, Europe Middle East & Africa, and Asia-Pacific that shape sourcing strategies, partnership choices, and compliance pathways
Regional dynamics materially influence how programs are structured, where partners are selected, and how regulatory strategies are executed. In the Americas, a dense network of academic medical centers, biotechnology firms, and contract research organizations creates an ecosystem where collaboration and access to specialized expertise are critical advantages, and where domestic regulatory pathways often intersect with cross-border partnerships. These interactions promote rapid iteration but also require careful management of intellectual property and data governance when multi-jurisdictional studies are conducted.
In Europe, the Middle East & Africa region, regulatory harmonization efforts and stringent animal welfare standards exert a strong influence on study design and supplier qualification. Institutions operating in this region navigate a patchwork of national regulations and guidance that can affect approvals, facility accreditation, and the acceptability of certain model types. Conversely, the Asia-Pacific region combines high-capacity manufacturing and a growing base of research institutions with variable regulatory environments, driving an emphasis on establishing local quality systems and validated supply chains to meet both domestic and international expectations. Across all regions, strategic partnerships, local capability development, and a nuanced understanding of regulatory nuance are essential to sustain reliable preclinical operations.
Strategic differentiation through integrated preclinical services, quality systems, and collaborative partnerships that enhance reproducibility and translational value
Competitive positioning among companies operating in this space increasingly centers on integrated service offerings, quality assurance, and the ability to deliver validated, reproducible data. Leading organizations differentiate through investments in model development platforms, comprehensive characterization services, and robust data management systems that support traceability and audit readiness. Many firms emphasize cross-functional capabilities that combine breeding and supply chain reliability with surgical expertise, advanced imaging, and bioinformatics support to provide end-to-end preclinical solutions that reduce handoffs and potential variability.
Strategic partnerships and alliances are another defining feature of the competitive landscape. Companies that cultivate deep collaborations with academic centers, regulatory specialists, and technology providers can accelerate the validation of novel models and create pathways for broader acceptance of innovative endpoints. Additionally, firms that prioritize transparent quality systems, third-party accreditation, and reproducibility protocols are better positioned to serve risk-averse pharmaceutical sponsors and institutional review boards. Ultimately, organizational success is linked to the capacity to deliver reliable, translationally relevant data while managing ethical, regulatory, and operational complexity.
Actionable strategic roadmap for industry leaders to strengthen sourcing resilience, elevate model validation, and integrate ethics-driven operational excellence
Industry leaders should adopt a multi-pronged approach that aligns scientific rigor with operational resilience and ethical stewardship. First, invest in diversified sourcing strategies that reduce exposure to single-vendor risks and tariff-related disruptions while maintaining strict quality and traceability standards. Building redundancy across breeding facilities, reagent suppliers, and analytical vendors supports continuity and mitigates schedule risk without compromising data integrity.
Second, prioritize validation and characterization processes for genetically engineered and disease models to strengthen translational relevance and regulatory defensibility. This includes adopting standardized phenotyping protocols, enhancing longitudinal data collection, and integrating digital endpoints where appropriate. Third, deepen partnerships with regulatory experts and institutional review bodies to co-develop acceptable endpoints and study designs that meet evolving welfare and data-quality expectations. Fourth, commit to workforce development and operational excellence by training staff in advanced surgical techniques, welfare-centric husbandry, and contemporary data stewardship practices. Finally, pursue selective technology adoption-such as automated phenotyping, secure cloud-based data platforms, and laboratory information management systems-to enhance reproducibility and accelerate decision-making while ensuring that changes are accompanied by robust validation and change-control processes.
Transparent and reproducible research methodology combining literature synthesis, expert interviews, and technical validation to support confident decision making in preclinical development
This research synthesizes information from peer-reviewed literature, regulatory guidance documents, technical white papers, and primary qualitative interviews with subject matter experts across preclinical operations, veterinary science, and regulatory affairs. The analytical approach prioritizes methodological transparency by documenting model classification criteria, validation milestones, and ethical oversight considerations that inform comparative assessments. Triangulation across sources ensures that technical characterizations and operational observations reflect consensus where possible and clearly note areas of ongoing debate.
Qualitative inputs were systematically coded to identify recurring themes related to model performance, supply chain constraints, and regulatory interaction. Technical evaluations of genetically engineered models and surgical approaches relied on methodological benchmarks, such as validation endpoints and reproducibility indicators, rather than quantitative extrapolations. Where regulatory interpretation was necessary, guidance documents and precedent case studies were used to illustrate practical implications for study design and documentation. The methodology emphasizes reproducible narrative synthesis and offers transparency about data provenance to support informed decision making by technical and executive audiences.
Concluding synthesis emphasizing the need for coordinated scientific rigor, operational resilience, and collaborative governance to enhance translational outcomes
In conclusion, the animal model environment is at an inflection point where technological possibility, ethical advancement, and regulatory scrutiny intersect to create both challenges and opportunities for translational research. Organizations that respond by strengthening model validation, diversifying supply chains, and investing in quality systems will be better positioned to deliver reproducible, actionable preclinical evidence. Collaboration across academic, commercial, and regulatory stakeholders will remain essential to advance standards, share best practices, and establish acceptance pathways for innovative models and endpoints.
Looking forward, the capacity to adapt operationally while maintaining scientific rigor will determine which programs convert preclinical hypotheses into clinical success. Institutions that treat model selection and supply chain design as strategic assets-supported by clear governance, trained personnel, and validated data systems-will capture the greatest value from their preclinical investments and reduce translational risk.
Note: PDF & Excel + Online Access - 1 Year
A concise orienting narrative describing how recent scientific advances and regulatory expectations are reshaping preclinical model selection and translational strategy
The animal model landscape underpins translational science and preclinical development across pharmaceutical, biotechnology, and academic research settings. In recent years, the sector has experienced rapid technological maturation driven by advances in genetic engineering, refined surgical techniques, and more rigorous standards for pharmacokinetic and toxicology evaluation. These developments have reshaped how experimental models are selected, validated, and integrated into development pipelines, while raising new considerations for ethical review, reproducibility, and regulatory dialogue.
Consequently, organizations that rely on high-quality in vivo data now face complex trade-offs between model fidelity, throughput, and regulatory alignment. Decision-makers must weigh the strengths and limitations of rodent and nonrodent systems in the context of therapeutic modality, target biology, and translational intent. In parallel, increasing scrutiny on study design and data integrity has elevated the role of standardized protocols, centralized phenotyping platforms, and third-party quality assurance, making the choice of partners and suppliers a strategic determinant of preclinical success.
How converging technological innovations, ethical expectations, and regulatory guidance are accelerating a shift toward more translationally relevant preclinical models
Transformative shifts in the animal model ecosystem are being driven by converging technological, ethical, and regulatory currents that change how preclinical evidence is generated and interpreted. The proliferation of genetically engineered models, particularly CRISPR-based approaches, has expanded the experimental palette and enabled more precise disease recapitulation, while refinements in pharmacological and surgical models have improved construct and face validity for complex indications. At the same time, automated phenotyping and digital data capture have begun to address reproducibility concerns by standardizing endpoints and enabling deeper longitudinal analysis.
Ethical evolution is also a significant driver of change. Heightened expectations for welfare, the push toward the 3Rs-replace, reduce, refine-and institutional commitments to transparency have prompted organizations to adopt alternative experimental designs and enhanced enrichment protocols. Regulatory agencies have responded with more detailed guidance on model selection, data quality, and the acceptability of novel endpoints, creating an environment where scientific rigor and ethical practice are mutually reinforcing. Together, these forces are accelerating a shift from convenience-driven model selection to mission-aligned strategies that prioritize translational relevance and regulatory defensibility.
Evaluating the cumulative operational and strategic effects of evolving United States tariff dynamics on preclinical sourcing, continuity, and program resilience
Recent trade policy developments, including tariff adjustments and customs reviews, have introduced new considerations for procurement, supply chain resilience, and cost management in preclinical research operations. Tariff changes can accentuate the complexity of sourcing specialized animals, equipment, and reagents from international suppliers, thereby incentivizing organizations to reassess vendor mixes and contractual terms. In practice, procurement teams are increasingly evaluating total landed costs, lead times, and contingency options to reduce exposure to cross-border tariff volatility and to maintain continuity of studies with fixed timelines.
Beyond direct cost implications, tariff-related disruptions can influence strategic sourcing decisions that affect scientific timelines. For example, longer lead times for specialty animals or imported diagnostic kits may prompt shifts toward in-house breeding programs or local supplier development, which in turn require capital investment and operational capability building. These adjustments carry implications for study design and partner selection, as institutions balance the desire for stable supply chains with the need to preserve model quality and regulatory traceability. Consequently, the cumulative impact of tariff dynamics is felt not only in procurement budgets but also across program risk profiles and the agility of translational pipelines.
Deep segmentation analysis that clarifies how animal type, model design, application area, and end user priorities drive distinct operational and scientific requirements
Effective segmentation analysis reveals how model selection and operational priorities vary across the full spectrum of biological systems and experimental approaches. When studies are examined by animal type, distinctions between nonrodents and rodents become apparent: nonrodent categories such as dogs, nonhuman primates, and rabbits frequently serve projects requiring closer physiological similarity to humans and may be prioritized for late-stage safety and translational pharmacology, while rodent categories including hamsters and guinea pigs, mice, and rats are often the first-line choice for mechanistic studies, high-throughput screening, and genetic interrogation. These differences influence facility requirements, ethical oversight intensity, and the scale of breeding or vendor partnerships required to support sustained research activity.
Model type further stratifies research needs and methodological rigor. Disease models, genetically engineered models, pharmacological models, and surgical models each bring distinct validation pathways and endpoint considerations. Within genetically engineered models, techniques such as CRISPR models, knock-in models, knockout models, and transgenic models present varying timelines and characterization demands, which affect study reproducibility and regulatory acceptability. Application-driven segmentation-spanning ADME and PK studies, disease research, drug discovery and development, and toxicology assessment-shapes experimental design priorities, required analytical capabilities, and data reporting standards. Finally, end user segmentation highlights divergent service and infrastructure expectations across academic and research institutes, contract research organizations, hospitals and diagnostic laboratories, and pharmaceutical and biotechnology companies, with each group placing different emphases on throughput, customization, and compliance support.
Regional dynamics and regulatory nuance across the Americas, Europe Middle East & Africa, and Asia-Pacific that shape sourcing strategies, partnership choices, and compliance pathways
Regional dynamics materially influence how programs are structured, where partners are selected, and how regulatory strategies are executed. In the Americas, a dense network of academic medical centers, biotechnology firms, and contract research organizations creates an ecosystem where collaboration and access to specialized expertise are critical advantages, and where domestic regulatory pathways often intersect with cross-border partnerships. These interactions promote rapid iteration but also require careful management of intellectual property and data governance when multi-jurisdictional studies are conducted.
In Europe, the Middle East & Africa region, regulatory harmonization efforts and stringent animal welfare standards exert a strong influence on study design and supplier qualification. Institutions operating in this region navigate a patchwork of national regulations and guidance that can affect approvals, facility accreditation, and the acceptability of certain model types. Conversely, the Asia-Pacific region combines high-capacity manufacturing and a growing base of research institutions with variable regulatory environments, driving an emphasis on establishing local quality systems and validated supply chains to meet both domestic and international expectations. Across all regions, strategic partnerships, local capability development, and a nuanced understanding of regulatory nuance are essential to sustain reliable preclinical operations.
Strategic differentiation through integrated preclinical services, quality systems, and collaborative partnerships that enhance reproducibility and translational value
Competitive positioning among companies operating in this space increasingly centers on integrated service offerings, quality assurance, and the ability to deliver validated, reproducible data. Leading organizations differentiate through investments in model development platforms, comprehensive characterization services, and robust data management systems that support traceability and audit readiness. Many firms emphasize cross-functional capabilities that combine breeding and supply chain reliability with surgical expertise, advanced imaging, and bioinformatics support to provide end-to-end preclinical solutions that reduce handoffs and potential variability.
Strategic partnerships and alliances are another defining feature of the competitive landscape. Companies that cultivate deep collaborations with academic centers, regulatory specialists, and technology providers can accelerate the validation of novel models and create pathways for broader acceptance of innovative endpoints. Additionally, firms that prioritize transparent quality systems, third-party accreditation, and reproducibility protocols are better positioned to serve risk-averse pharmaceutical sponsors and institutional review boards. Ultimately, organizational success is linked to the capacity to deliver reliable, translationally relevant data while managing ethical, regulatory, and operational complexity.
Actionable strategic roadmap for industry leaders to strengthen sourcing resilience, elevate model validation, and integrate ethics-driven operational excellence
Industry leaders should adopt a multi-pronged approach that aligns scientific rigor with operational resilience and ethical stewardship. First, invest in diversified sourcing strategies that reduce exposure to single-vendor risks and tariff-related disruptions while maintaining strict quality and traceability standards. Building redundancy across breeding facilities, reagent suppliers, and analytical vendors supports continuity and mitigates schedule risk without compromising data integrity.
Second, prioritize validation and characterization processes for genetically engineered and disease models to strengthen translational relevance and regulatory defensibility. This includes adopting standardized phenotyping protocols, enhancing longitudinal data collection, and integrating digital endpoints where appropriate. Third, deepen partnerships with regulatory experts and institutional review bodies to co-develop acceptable endpoints and study designs that meet evolving welfare and data-quality expectations. Fourth, commit to workforce development and operational excellence by training staff in advanced surgical techniques, welfare-centric husbandry, and contemporary data stewardship practices. Finally, pursue selective technology adoption-such as automated phenotyping, secure cloud-based data platforms, and laboratory information management systems-to enhance reproducibility and accelerate decision-making while ensuring that changes are accompanied by robust validation and change-control processes.
Transparent and reproducible research methodology combining literature synthesis, expert interviews, and technical validation to support confident decision making in preclinical development
This research synthesizes information from peer-reviewed literature, regulatory guidance documents, technical white papers, and primary qualitative interviews with subject matter experts across preclinical operations, veterinary science, and regulatory affairs. The analytical approach prioritizes methodological transparency by documenting model classification criteria, validation milestones, and ethical oversight considerations that inform comparative assessments. Triangulation across sources ensures that technical characterizations and operational observations reflect consensus where possible and clearly note areas of ongoing debate.
Qualitative inputs were systematically coded to identify recurring themes related to model performance, supply chain constraints, and regulatory interaction. Technical evaluations of genetically engineered models and surgical approaches relied on methodological benchmarks, such as validation endpoints and reproducibility indicators, rather than quantitative extrapolations. Where regulatory interpretation was necessary, guidance documents and precedent case studies were used to illustrate practical implications for study design and documentation. The methodology emphasizes reproducible narrative synthesis and offers transparency about data provenance to support informed decision making by technical and executive audiences.
Concluding synthesis emphasizing the need for coordinated scientific rigor, operational resilience, and collaborative governance to enhance translational outcomes
In conclusion, the animal model environment is at an inflection point where technological possibility, ethical advancement, and regulatory scrutiny intersect to create both challenges and opportunities for translational research. Organizations that respond by strengthening model validation, diversifying supply chains, and investing in quality systems will be better positioned to deliver reproducible, actionable preclinical evidence. Collaboration across academic, commercial, and regulatory stakeholders will remain essential to advance standards, share best practices, and establish acceptance pathways for innovative models and endpoints.
Looking forward, the capacity to adapt operationally while maintaining scientific rigor will determine which programs convert preclinical hypotheses into clinical success. Institutions that treat model selection and supply chain design as strategic assets-supported by clear governance, trained personnel, and validated data systems-will capture the greatest value from their preclinical investments and reduce translational risk.
Note: PDF & Excel + Online Access - 1 Year
Table of Contents
181 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Rapid adoption of CRISPR/Cas9 gene-edited animal models for rare disease research and drug discovery
- 5.2. Growing preference for humanized mouse models in oncology immunotherapy efficacy and safety evaluation
- 5.3. Integration of AI-powered image analysis and behavioral tracking in preclinical animal model phenotyping workflows
- 5.4. Increasing investment in large animal models such as pigs and non-human primates for xenotransplantation studies
- 5.5. Emergence of organ-on-a-chip and 3D bioprinted tissue platforms as alternatives to traditional animal testing
- 5.6. Regulatory pressure driving development of in vitro and computational models to reduce reliance on animal experiments
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. Animal Model Market, by Animal Type
- 8.1. Nonrodents
- 8.1.1. Dogs
- 8.1.2. Nonhuman Primates
- 8.1.3. Rabbits
- 8.2. Rodents
- 8.2.1. Hamsters & Guinea Pigs
- 8.2.2. Mice
- 8.2.3. Rats
- 9. Animal Model Market, by Model Type
- 9.1. Disease Models
- 9.2. Genetically Engineered Models
- 9.2.1. CRISPR Models
- 9.2.2. Knock-In Models
- 9.2.3. Knockout Models
- 9.2.4. Transgenic Models
- 9.3. Pharmacological Models
- 9.4. Surgical Models
- 10. Animal Model Market, by Application
- 10.1. ADME & PK Studies
- 10.2. Disease Research
- 10.3. Drug Discovery & Development
- 10.4. Toxicology Assessment
- 11. Animal Model Market, by End User
- 11.1. Academic & Research Institutes
- 11.2. Contract Research Organizations
- 11.3. Hospitals & Diagnostic Laboratories
- 11.4. Pharmaceutical & Biotechnology Companies
- 12. Animal Model Market, by Region
- 12.1. Americas
- 12.1.1. North America
- 12.1.2. Latin America
- 12.2. Europe, Middle East & Africa
- 12.2.1. Europe
- 12.2.2. Middle East
- 12.2.3. Africa
- 12.3. Asia-Pacific
- 13. Animal Model Market, by Group
- 13.1. ASEAN
- 13.2. GCC
- 13.3. European Union
- 13.4. BRICS
- 13.5. G7
- 13.6. NATO
- 14. Animal Model Market, by Country
- 14.1. United States
- 14.2. Canada
- 14.3. Mexico
- 14.4. Brazil
- 14.5. United Kingdom
- 14.6. Germany
- 14.7. France
- 14.8. Russia
- 14.9. Italy
- 14.10. Spain
- 14.11. China
- 14.12. India
- 14.13. Japan
- 14.14. Australia
- 14.15. South Korea
- 15. Competitive Landscape
- 15.1. Market Share Analysis, 2024
- 15.2. FPNV Positioning Matrix, 2024
- 15.3. Competitive Analysis
- 15.3.1. Aurora BioSolutions
- 15.3.2. Biocytogen
- 15.3.3. Charles River Laboratories International Inc.
- 15.3.4. Crown Bioscience Inc.
- 15.3.5. Cyagen Biosciences Inc.
- 15.3.6. Envigo RMS LLC
- 15.3.7. Genoway
- 15.3.8. Hera BioLabs
- 15.3.9. ingenious targeting laboratory
- 15.3.10. Inotiv
- 15.3.11. Janvier Labs
- 15.3.12. Mirimus Inc.
- 15.3.13. Ozgene Pty Ltd
- 15.3.14. PhoenixBio Co. Ltd.
- 15.3.15. PolyGene AG
- 15.3.16. Taconic Biosciences Inc.
- 15.3.17. The Jackson Laboratory
- 15.3.18. Transgenic Inc.
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

