Agriculture M2M Market by Component (Connectivity, Hardware, Software & Services), Communication Technology (Cellular, Lpwan, Rf), Application, End User, Deployment - Global Forecast 2025-2032
Description
The Agriculture M2M Market was valued at USD 3.74 billion in 2024 and is projected to grow to USD 4.05 billion in 2025, with a CAGR of 8.46%, reaching USD 7.17 billion by 2032.
A comprehensive orientation to the modern agriculture M2M ecosystem that frames connectivity, devices, and software as the foundation for operational resilience and efficiency
The agricultural machine-to-machine landscape is rapidly evolving as connected technologies intersect with longstanding operational challenges across farm types and supply chains. This introduction situates readers within a complex environment where sensor-driven data, remote connectivity, and software orchestration are redefining how crops, livestock, aquaculture, and controlled-environment systems are managed. It emphasizes the convergence of hardware reliability, resilient connectivity, and domain-specific applications that collectively enable farms to improve productivity, reduce input waste, and enhance traceability.
Emerging regulatory pressures, shifting trade policies, and heightened consumer expectations for sustainability are simultaneously reshaping investment priorities and procurement strategies. Against this backdrop, technology vendors, integrators, and end users are navigating a mix of legacy infrastructure and modern platforms. The introduction underscores the imperative for interoperable solutions, flexible deployment models, and repeatable use cases that translate pilot successes into scalable implementations. It also frames the subsequent analysis by highlighting the critical role of communication technologies, component ecosystems, and application-level intelligence in unlocking operational value and resilience across diverse agricultural settings.
Examining the technological and operational inflection points reshaping agricultural machine-to-machine deployments and accelerating scalable integration across farm environments
The agricultural technology landscape is undergoing transformative shifts driven by the maturation of low-power wide-area networking, expanded cellular capabilities, modular sensor economics, and the embedding of analytics at the edge. These shifts are enabling a movement away from siloed pilots toward integrated, cross-functional deployments that link field-level telemetry to decision-support systems and supply chain orchestration platforms. As a result, operators are moving from reactive maintenance and manual monitoring to predictive operations and automated control workflows that reduce labor intensity and improve responsiveness to environmental variability.
Simultaneously, climate variability and intensified regulatory scrutiny are accelerating adoption of precision irrigation, soil health monitoring, and livestock welfare solutions that deliver demonstrable sustainability metrics. On the vendor side, partnerships between connectivity providers, sensor manufacturers, and software integrators are becoming the norm as customers demand turnkey experiences and clear ROI pathways. The democratization of analytics tools and growing acceptance of hybrid cloud architectures further enable distributed farms and enterprises to benefit from scalable compute and storage while maintaining control over sensitive operational data. These dynamics collectively shift competitive advantage toward organizations that can integrate heterogeneous components into coherent, secure, and easily managed offerings.
Assessing how 2025 tariff developments are reshaping sourcing, product design, and procurement risk dynamics for agriculture-focused machine-to-machine ecosystems
The cumulative impact of United States tariff actions in 2025 reverberates through supply chains, procurement strategies, and total cost of ownership considerations for agricultural M2M systems. Tariff-induced cost pressures on imported sensors, communication modules, and specialized hardware have prompted manufacturers to reassess sourcing strategies and prioritize supplier diversification. Consequently, procurement cycles are lengthening as buyers demand greater visibility into origin, lead times, and cost volatility, while some vendors accelerate vertical integration to preserve margin and ensure continuity of supply.
Beyond direct cost effects, tariff dynamics influence product roadmaps, prompting designers to favor components with broader regional supply availability or to invest in compliance engineering to mitigate exposure. For service providers and integrators, the tariff environment has intensified emphasis on software-centric value propositions that de-emphasize hardware replacement and instead offer optimization through firmware updates, analytics, and lifecycle services. In parallel, project financiers and buyers are more likely to require contractual protections against sudden component cost escalations, shifting risk allocation upstream. Across the ecosystem, these developments favor flexible deployment models, modular hardware designs, and an increased focus on total lifecycle support to absorb shocks from trade policy shifts.
Integrated segmentation analysis that connects applications, components, communication technologies, end users, and deployment models to reveal differentiated adoption pathways
Key segmentation insights emerge when application, component, communication technology, end-user environment, and deployment modality are considered together to reveal differentiated adoption patterns and strategic imperatives. Application-level demand spans aquaculture management with its emphasis on feed management and water quality monitoring; greenhouse automation which concentrates on climate control, CO2 monitoring, and humidity control; livestock monitoring that prioritizes feeding management, health monitoring, and location tracking; precision farming focused on equipment tracking, field monitoring, irrigation management, and soil monitoring; and supply chain management centered on inventory management and temperature tracking. Each application imposes distinct requirements on sensing fidelity, data update cadence, and control loop latency, which in turn influence component choices and connectivity architectures.
From a component perspective, connectivity options, hardware elements, and software and services form a layered stack. Connectivity choices include cellular, LPWAN, RF, and satellite, each carrying trade-offs in bandwidth, cost, and coverage. Hardware spans actuators, controllers, and sensors where robustness, power efficiency, and maintainability are primary selection criteria. Software and services cover both managed services and packaged software capabilities that enable analytics, visualization, and integration. Communication technology segmentation highlights cellular options across legacy 2G/3G, 4G/LTE, and 5G, while LPWAN variants such as LoRaWAN, NB-IoT, and Sigfox meet long-range, low-power use cases. End users range from aquaculture farms and crop farms to greenhouses and livestock operations, each with distinct operational rhythms and adoption constraints. Finally, deployment choices between cloud and on-premises architectures, including hybrid, private, and public cloud variants, reflect differing priorities for data sovereignty, latency, and cost structure. Understanding how these dimensions interact is critical to designing propositions that resonate with specific farm types and operational objectives.
Regional dynamics and policy environments across the Americas, Europe Middle East & Africa, and Asia-Pacific that determine differentiated adoption and go-to-market approaches
Regional dynamics shape both demand and supply contours in the agriculture M2M domain, with structural differences across the Americas, Europe, Middle East & Africa, and Asia-Pacific informing strategic priorities. In the Americas, commercial-scale operations and strong agribusiness supply chains support rapid adoption of telemetry and precision farming tools, while regional investment in rural connectivity continues to expand coverage and lower barriers to deployment. Policy incentives and sustainability commitments in many countries further stimulate interest in solutions that deliver measurable reductions in water and chemical inputs.
In Europe, the Middle East & Africa, regulatory frameworks around environmental reporting, food safety, and traceability are influencing buyer expectations and accelerating uptake of greenhouse automation and livestock monitoring systems that can demonstrate compliance. Fragmented farm sizes and varying connectivity conditions create a market that prizes interoperable, low-footprint solutions. The Asia-Pacific region presents a mix of high-density commercial operations and smallholder systems, driving demand for scalable, cost-effective sensor networks and tailored service models. Throughout these regions, differences in capital availability, labor dynamics, and local agronomic practices determine which use cases achieve early scale, highlighting the need for regionally adapted go-to-market approaches and partnership ecosystems.
Company-level competitive dynamics and partnership strategies that determine who can deliver integrated hardware, connectivity, and services for scalable agricultural deployments
Key company-level insights center on evolving business models, partnership ecosystems, and the competitive advantages required to succeed in the increasingly modular agriculture M2M marketplace. Successful organizations typically combine domain expertise with systems integration capabilities, offering both reliable hardware and analytics-led services. Sensor manufacturers that provide ruggedized, low-power devices with clear maintenance pathways tend to gain traction with commercial growers, while connectivity providers that offer flexible pricing and multi-protocol support reduce friction for large deployments. Software vendors that emphasize open interfaces and configurable analytics foster broader adoption by enabling integration with farm management systems and third-party platforms.
Partnership strategies are increasingly important; companies that establish collaborations across hardware, connectivity, and software layers can deliver more complete value propositions and shorten time-to-value for customers. Moreover, firms that invest in field services, training, and localized support differentiate themselves in markets where technical skills and trust are decisive. Strategic M&A and alliances are also shaping competitive positioning as vendors seek to close capability gaps in edge computing, device management, and compliance reporting. Ultimately, companies that align their offerings with end-user workflows, provide transparent total-cost narratives, and demonstrate repeatable outcomes are best positioned to capture long-term enterprise engagements.
Practical strategic moves and partnership models that industrial and software leaders should adopt to accelerate deployment, reduce risk, and demonstrate measurable farm-level outcomes
Actionable recommendations for industry leaders emphasize pragmatic steps to accelerate adoption while mitigating operational and policy risks. Prioritize modular architectures that allow component substitution and incremental upgrades so deployments can adapt to supply chain disruption without sweeping redesigns. Align product roadmaps with the sensing, latency, and durability requirements of targeted applications, focusing development on interoperability, secure device onboarding, and over-the-air update capabilities that reduce field maintenance costs. Invest in regional support models and training programs to build trust and lower the barriers for farm operators who may be adopting connected technologies for the first time.
From a commercial standpoint, structure offerings to combine hardware, connectivity, and analytics into outcome-based engagements that shift the buyer conversation from unit costs to operational impact. Strengthen supplier diversification strategies to mitigate tariff and trade policy exposure while exploring local assembly or contract manufacturing where economically justified. Lastly, develop partnerships across agronomic advisory, finance, and logistics providers to create bundled solutions that address both operational efficiency and sustainability reporting needs, thereby creating multi-stakeholder value and increasing switching costs for customers.
A transparent, multi-method research approach combining primary interviews, technical evaluations, and policy analysis to ensure robust, field-relevant conclusions and pragmatic scenarios
The research methodology underpinning this analysis combined qualitative and quantitative evidence gathering with triangulation across primary interviews, technical assessments, and public policy review. Primary inputs included structured interviews with technology vendors, integrators, and farm operators to understand real-world constraints, adoption drivers, and maintenance practices across a range of production systems. Technical assessments evaluated device specifications, connectivity performance under field conditions, and software capabilities for device management and analytics. Secondary inputs comprised regulatory documents, trade announcements, and publicly available technical standards to contextualize tariff impacts and interoperability considerations.
Findings were cross-validated through case study analysis of representative deployments in aquaculture, greenhouse, livestock, and field crop settings to ensure applicability across usage contexts. Scenario testing examined how variations in connectivity availability, component sourcing, and deployment models affect operational resilience. The methodology acknowledges limitations where proprietary performance data or confidential contractual terms were not accessible; in such instances, conservative assumptions and sensitivity analysis were used. This transparent approach ensures the conclusions are grounded in observed behavior and technical realities while identifying where further primary data collection could refine recommendations.
Summarizing the strategic imperatives for transitioning from pilots to scalable, resilient M2M agricultural systems while managing supply chain and policy-driven risks
In conclusion, the machine-to-machine agricultural landscape is entering a phase of consolidation and pragmatic scaling where interoperability, supply chain resilience, and outcome-focused commercial models determine success. Advances in LPWAN and cellular technologies, coupled with improved sensor economics and edge-enabled analytics, are enabling applications that materially reduce resource use and improve traceability across production and distribution chains. However, evolving trade policy and tariff measures in 2025 have underscored the importance of diversified sourcing strategies and flexible product architectures to absorb cost and lead-time shocks.
For decision-makers, the imperative is clear: prioritize solutions that balance immediate operational needs with long-term adaptability. This means selecting partners with proven field support capabilities, investing in modular deployments that can evolve, and structuring commercial agreements to align incentives around measurable performance improvements. By doing so, agricultural operators and their technology partners can move beyond pilot projects to deliver scalable, resilient systems that address both productivity and sustainability objectives in an increasingly complex global environment.
Note: PDF & Excel + Online Access - 1 Year
A comprehensive orientation to the modern agriculture M2M ecosystem that frames connectivity, devices, and software as the foundation for operational resilience and efficiency
The agricultural machine-to-machine landscape is rapidly evolving as connected technologies intersect with longstanding operational challenges across farm types and supply chains. This introduction situates readers within a complex environment where sensor-driven data, remote connectivity, and software orchestration are redefining how crops, livestock, aquaculture, and controlled-environment systems are managed. It emphasizes the convergence of hardware reliability, resilient connectivity, and domain-specific applications that collectively enable farms to improve productivity, reduce input waste, and enhance traceability.
Emerging regulatory pressures, shifting trade policies, and heightened consumer expectations for sustainability are simultaneously reshaping investment priorities and procurement strategies. Against this backdrop, technology vendors, integrators, and end users are navigating a mix of legacy infrastructure and modern platforms. The introduction underscores the imperative for interoperable solutions, flexible deployment models, and repeatable use cases that translate pilot successes into scalable implementations. It also frames the subsequent analysis by highlighting the critical role of communication technologies, component ecosystems, and application-level intelligence in unlocking operational value and resilience across diverse agricultural settings.
Examining the technological and operational inflection points reshaping agricultural machine-to-machine deployments and accelerating scalable integration across farm environments
The agricultural technology landscape is undergoing transformative shifts driven by the maturation of low-power wide-area networking, expanded cellular capabilities, modular sensor economics, and the embedding of analytics at the edge. These shifts are enabling a movement away from siloed pilots toward integrated, cross-functional deployments that link field-level telemetry to decision-support systems and supply chain orchestration platforms. As a result, operators are moving from reactive maintenance and manual monitoring to predictive operations and automated control workflows that reduce labor intensity and improve responsiveness to environmental variability.
Simultaneously, climate variability and intensified regulatory scrutiny are accelerating adoption of precision irrigation, soil health monitoring, and livestock welfare solutions that deliver demonstrable sustainability metrics. On the vendor side, partnerships between connectivity providers, sensor manufacturers, and software integrators are becoming the norm as customers demand turnkey experiences and clear ROI pathways. The democratization of analytics tools and growing acceptance of hybrid cloud architectures further enable distributed farms and enterprises to benefit from scalable compute and storage while maintaining control over sensitive operational data. These dynamics collectively shift competitive advantage toward organizations that can integrate heterogeneous components into coherent, secure, and easily managed offerings.
Assessing how 2025 tariff developments are reshaping sourcing, product design, and procurement risk dynamics for agriculture-focused machine-to-machine ecosystems
The cumulative impact of United States tariff actions in 2025 reverberates through supply chains, procurement strategies, and total cost of ownership considerations for agricultural M2M systems. Tariff-induced cost pressures on imported sensors, communication modules, and specialized hardware have prompted manufacturers to reassess sourcing strategies and prioritize supplier diversification. Consequently, procurement cycles are lengthening as buyers demand greater visibility into origin, lead times, and cost volatility, while some vendors accelerate vertical integration to preserve margin and ensure continuity of supply.
Beyond direct cost effects, tariff dynamics influence product roadmaps, prompting designers to favor components with broader regional supply availability or to invest in compliance engineering to mitigate exposure. For service providers and integrators, the tariff environment has intensified emphasis on software-centric value propositions that de-emphasize hardware replacement and instead offer optimization through firmware updates, analytics, and lifecycle services. In parallel, project financiers and buyers are more likely to require contractual protections against sudden component cost escalations, shifting risk allocation upstream. Across the ecosystem, these developments favor flexible deployment models, modular hardware designs, and an increased focus on total lifecycle support to absorb shocks from trade policy shifts.
Integrated segmentation analysis that connects applications, components, communication technologies, end users, and deployment models to reveal differentiated adoption pathways
Key segmentation insights emerge when application, component, communication technology, end-user environment, and deployment modality are considered together to reveal differentiated adoption patterns and strategic imperatives. Application-level demand spans aquaculture management with its emphasis on feed management and water quality monitoring; greenhouse automation which concentrates on climate control, CO2 monitoring, and humidity control; livestock monitoring that prioritizes feeding management, health monitoring, and location tracking; precision farming focused on equipment tracking, field monitoring, irrigation management, and soil monitoring; and supply chain management centered on inventory management and temperature tracking. Each application imposes distinct requirements on sensing fidelity, data update cadence, and control loop latency, which in turn influence component choices and connectivity architectures.
From a component perspective, connectivity options, hardware elements, and software and services form a layered stack. Connectivity choices include cellular, LPWAN, RF, and satellite, each carrying trade-offs in bandwidth, cost, and coverage. Hardware spans actuators, controllers, and sensors where robustness, power efficiency, and maintainability are primary selection criteria. Software and services cover both managed services and packaged software capabilities that enable analytics, visualization, and integration. Communication technology segmentation highlights cellular options across legacy 2G/3G, 4G/LTE, and 5G, while LPWAN variants such as LoRaWAN, NB-IoT, and Sigfox meet long-range, low-power use cases. End users range from aquaculture farms and crop farms to greenhouses and livestock operations, each with distinct operational rhythms and adoption constraints. Finally, deployment choices between cloud and on-premises architectures, including hybrid, private, and public cloud variants, reflect differing priorities for data sovereignty, latency, and cost structure. Understanding how these dimensions interact is critical to designing propositions that resonate with specific farm types and operational objectives.
Regional dynamics and policy environments across the Americas, Europe Middle East & Africa, and Asia-Pacific that determine differentiated adoption and go-to-market approaches
Regional dynamics shape both demand and supply contours in the agriculture M2M domain, with structural differences across the Americas, Europe, Middle East & Africa, and Asia-Pacific informing strategic priorities. In the Americas, commercial-scale operations and strong agribusiness supply chains support rapid adoption of telemetry and precision farming tools, while regional investment in rural connectivity continues to expand coverage and lower barriers to deployment. Policy incentives and sustainability commitments in many countries further stimulate interest in solutions that deliver measurable reductions in water and chemical inputs.
In Europe, the Middle East & Africa, regulatory frameworks around environmental reporting, food safety, and traceability are influencing buyer expectations and accelerating uptake of greenhouse automation and livestock monitoring systems that can demonstrate compliance. Fragmented farm sizes and varying connectivity conditions create a market that prizes interoperable, low-footprint solutions. The Asia-Pacific region presents a mix of high-density commercial operations and smallholder systems, driving demand for scalable, cost-effective sensor networks and tailored service models. Throughout these regions, differences in capital availability, labor dynamics, and local agronomic practices determine which use cases achieve early scale, highlighting the need for regionally adapted go-to-market approaches and partnership ecosystems.
Company-level competitive dynamics and partnership strategies that determine who can deliver integrated hardware, connectivity, and services for scalable agricultural deployments
Key company-level insights center on evolving business models, partnership ecosystems, and the competitive advantages required to succeed in the increasingly modular agriculture M2M marketplace. Successful organizations typically combine domain expertise with systems integration capabilities, offering both reliable hardware and analytics-led services. Sensor manufacturers that provide ruggedized, low-power devices with clear maintenance pathways tend to gain traction with commercial growers, while connectivity providers that offer flexible pricing and multi-protocol support reduce friction for large deployments. Software vendors that emphasize open interfaces and configurable analytics foster broader adoption by enabling integration with farm management systems and third-party platforms.
Partnership strategies are increasingly important; companies that establish collaborations across hardware, connectivity, and software layers can deliver more complete value propositions and shorten time-to-value for customers. Moreover, firms that invest in field services, training, and localized support differentiate themselves in markets where technical skills and trust are decisive. Strategic M&A and alliances are also shaping competitive positioning as vendors seek to close capability gaps in edge computing, device management, and compliance reporting. Ultimately, companies that align their offerings with end-user workflows, provide transparent total-cost narratives, and demonstrate repeatable outcomes are best positioned to capture long-term enterprise engagements.
Practical strategic moves and partnership models that industrial and software leaders should adopt to accelerate deployment, reduce risk, and demonstrate measurable farm-level outcomes
Actionable recommendations for industry leaders emphasize pragmatic steps to accelerate adoption while mitigating operational and policy risks. Prioritize modular architectures that allow component substitution and incremental upgrades so deployments can adapt to supply chain disruption without sweeping redesigns. Align product roadmaps with the sensing, latency, and durability requirements of targeted applications, focusing development on interoperability, secure device onboarding, and over-the-air update capabilities that reduce field maintenance costs. Invest in regional support models and training programs to build trust and lower the barriers for farm operators who may be adopting connected technologies for the first time.
From a commercial standpoint, structure offerings to combine hardware, connectivity, and analytics into outcome-based engagements that shift the buyer conversation from unit costs to operational impact. Strengthen supplier diversification strategies to mitigate tariff and trade policy exposure while exploring local assembly or contract manufacturing where economically justified. Lastly, develop partnerships across agronomic advisory, finance, and logistics providers to create bundled solutions that address both operational efficiency and sustainability reporting needs, thereby creating multi-stakeholder value and increasing switching costs for customers.
A transparent, multi-method research approach combining primary interviews, technical evaluations, and policy analysis to ensure robust, field-relevant conclusions and pragmatic scenarios
The research methodology underpinning this analysis combined qualitative and quantitative evidence gathering with triangulation across primary interviews, technical assessments, and public policy review. Primary inputs included structured interviews with technology vendors, integrators, and farm operators to understand real-world constraints, adoption drivers, and maintenance practices across a range of production systems. Technical assessments evaluated device specifications, connectivity performance under field conditions, and software capabilities for device management and analytics. Secondary inputs comprised regulatory documents, trade announcements, and publicly available technical standards to contextualize tariff impacts and interoperability considerations.
Findings were cross-validated through case study analysis of representative deployments in aquaculture, greenhouse, livestock, and field crop settings to ensure applicability across usage contexts. Scenario testing examined how variations in connectivity availability, component sourcing, and deployment models affect operational resilience. The methodology acknowledges limitations where proprietary performance data or confidential contractual terms were not accessible; in such instances, conservative assumptions and sensitivity analysis were used. This transparent approach ensures the conclusions are grounded in observed behavior and technical realities while identifying where further primary data collection could refine recommendations.
Summarizing the strategic imperatives for transitioning from pilots to scalable, resilient M2M agricultural systems while managing supply chain and policy-driven risks
In conclusion, the machine-to-machine agricultural landscape is entering a phase of consolidation and pragmatic scaling where interoperability, supply chain resilience, and outcome-focused commercial models determine success. Advances in LPWAN and cellular technologies, coupled with improved sensor economics and edge-enabled analytics, are enabling applications that materially reduce resource use and improve traceability across production and distribution chains. However, evolving trade policy and tariff measures in 2025 have underscored the importance of diversified sourcing strategies and flexible product architectures to absorb cost and lead-time shocks.
For decision-makers, the imperative is clear: prioritize solutions that balance immediate operational needs with long-term adaptability. This means selecting partners with proven field support capabilities, investing in modular deployments that can evolve, and structuring commercial agreements to align incentives around measurable performance improvements. By doing so, agricultural operators and their technology partners can move beyond pilot projects to deliver scalable, resilient systems that address both productivity and sustainability objectives in an increasingly complex global environment.
Note: PDF & Excel + Online Access - 1 Year
Table of Contents
189 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Implementation of LPWAN connectivity protocols to enhance remote soil moisture and pH monitoring across large-scale farms
- 5.2. Adoption of AI-driven predictive maintenance platforms for autonomous agricultural machinery to reduce unplanned downtime
- 5.3. Deployment of edge computing gateways in remote agricultural zones to process sensor data with minimal latency
- 5.4. Use of blockchain-based traceability systems linked with M2M devices for transparent supply chain verification
- 5.5. Integration of drone-based multispectral imaging data with tractor-mounted IoT units for real-time pest detection
- 5.6. Utilization of real-time weather API integration with irrigation control M2M systems for dynamic water usage optimization
- 5.7. Development of solar-powered sensor networks to enable year-round monitoring in off-grid farming regions
- 5.8. Scalability of 5G private networks for high-bandwidth agricultural robotics coordination and monitoring in smart farms
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. Agriculture M2M Market, by Component
- 8.1. Connectivity
- 8.1.1. Cellular
- 8.1.2. Lpwan
- 8.1.3. Rf
- 8.1.4. Satellite
- 8.2. Hardware
- 8.2.1. Actuator
- 8.2.2. Controller
- 8.2.3. Sensor
- 8.3. Software & Services
- 8.3.1. Services
- 8.3.2. Software
- 9. Agriculture M2M Market, by Communication Technology
- 9.1. Cellular
- 9.1.1. 2G/3G
- 9.1.2. 4G/Lte
- 9.1.3. 5G
- 9.2. Lpwan
- 9.2.1. Lorawan
- 9.2.2. Nb-Iot
- 9.2.3. Sigfox
- 9.3. Rf
- 9.4. Satellite
- 10. Agriculture M2M Market, by Application
- 10.1. Aquaculture Management
- 10.1.1. Feed Management
- 10.1.2. Water Quality Monitoring
- 10.2. Greenhouse Automation
- 10.2.1. Climate Control
- 10.2.2. Co2 Monitoring
- 10.2.3. Humidity Control
- 10.3. Livestock Monitoring
- 10.3.1. Feeding Management
- 10.3.2. Health Monitoring
- 10.3.3. Location Tracking
- 10.4. Precision Farming
- 10.4.1. Equipment Tracking
- 10.4.2. Field Monitoring
- 10.4.3. Irrigation Management
- 10.4.4. Soil Monitoring
- 10.5. Supply Chain Management
- 10.5.1. Inventory Management
- 10.5.2. Temperature Tracking
- 11. Agriculture M2M Market, by End User
- 11.1. Aquaculture Farm
- 11.2. Crop Farm
- 11.3. Greenhouse
- 11.4. Livestock Farm
- 12. Agriculture M2M Market, by Deployment
- 12.1. Cloud
- 12.1.1. Hybrid Cloud
- 12.1.2. Private Cloud
- 12.1.3. Public Cloud
- 12.2. On-Premises
- 13. Agriculture M2M Market, by Region
- 13.1. Americas
- 13.1.1. North America
- 13.1.2. Latin America
- 13.2. Europe, Middle East & Africa
- 13.2.1. Europe
- 13.2.2. Middle East
- 13.2.3. Africa
- 13.3. Asia-Pacific
- 14. Agriculture M2M Market, by Group
- 14.1. ASEAN
- 14.2. GCC
- 14.3. European Union
- 14.4. BRICS
- 14.5. G7
- 14.6. NATO
- 15. Agriculture M2M Market, by Country
- 15.1. United States
- 15.2. Canada
- 15.3. Mexico
- 15.4. Brazil
- 15.5. United Kingdom
- 15.6. Germany
- 15.7. France
- 15.8. Russia
- 15.9. Italy
- 15.10. Spain
- 15.11. China
- 15.12. India
- 15.13. Japan
- 15.14. Australia
- 15.15. South Korea
- 16. Competitive Landscape
- 16.1. Market Share Analysis, 2024
- 16.2. FPNV Positioning Matrix, 2024
- 16.3. Competitive Analysis
- 16.3.1. Aeris Communications, Inc.
- 16.3.2. Lindsay Corporation
- 16.3.3. Eltopia Communications
- 16.3.4. Quake Global, Inc.
- 16.3.5. Orange Business Services
- 16.3.6. SemiosBio Technologies Inc.
- 16.3.7. Telit Communications PLC
- 16.3.8. Tyro Products B.V.
- 16.3.9. Verizon Communications, Inc.
- 16.3.10. Vodafone Group PLC
- 16.3.11. NTT Communications Corporation
- 16.3.12. NEC Corporation
- 16.3.13. Inmarsat Global Limited
- 16.3.14. AT & T Inc.
- 16.3.15. Ericsson
- 16.3.16. Iridium Communications Inc.
- 16.3.17. Connecta Satellite Solutions LLC.
- 16.3.18. C. Mer Industries
- 16.3.19. Thales Group
- 16.3.20. Robustel
- 16.3.21. Singtel
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

