AI in Construction Market by Solution (Hardware, Services, Software), Technology (Computer Vision, Expert Systems, Internet Of Things), Application, Deployment Mode, End User - Global Forecast 2025-2032
Description
The AI in Construction Market was valued at USD 2.37 billion in 2024 and is projected to grow to USD 2.94 billion in 2025, with a CAGR of 24.63%, reaching USD 13.82 billion by 2032.
Framing the strategic imperative for artificial intelligence adoption across the construction lifecycle to guide investment, governance, and operational transformation decisions
The built environment is undergoing a methodological and technological shift as artificial intelligence embeds itself into the workflows, systems, and decision frameworks that underpin planning, construction, and asset operations. This introduction orients senior leaders to the prevailing dynamics, clarifying why AI is no longer an aspirational capability but an operational imperative across project lifecycles. It highlights the interplay between data availability, sensor proliferation, and algorithmic maturity, and explains how these forces together realign risk profiles, cost structures, and competitive differentiation for stakeholders across the value chain.
By situating AI adoption within practical operational contexts, the introduction outlines the types of outcomes organizations can prioritize-improved schedule adherence, enhanced safety performance, reduced rework, and more accurate cost and resource planning. It also establishes the report’s scope and approach, emphasizing applied use cases and strategic implications rather than purely technical exposition, thereby preparing readers to interpret subsequent sections with an executive lens toward investment, governance, and capability-building.
How emerging AI technologies and evolving procurement expectations are reconfiguring construction workflows, vendor roles, and organizational governance across project lifecycles
The landscape of construction is being transformed by a convergence of technology, regulatory shifts, and new expectations for speed and sustainability. AI-driven workflows are altering how designs are validated, schedules are optimized, and field conditions are monitored, creating a faster feedback loop from site data to engineering decisions. This transition has produced new vendor archetypes and integrators who combine domain expertise with advanced analytics, blurring traditional boundaries between equipment manufacturers, software vendors, and services providers.
Concurrently, rising client expectations for transparency and accountability are reshaping procurement and contracting models, encouraging the adoption of digital twins, real-time monitoring, and predictive capabilities. As a result, organizations that embed AI into governance structures and operational routines are better positioned to capture efficiency gains and mitigate downstream risks, while those that delay integration face escalating costs of retrofitting legacy systems and retraining dispersed workforces.
Understanding the multifaceted operational and procurement consequences of recent United States tariff shifts on hardware supply chains and project risk management in construction
Recent tariff adjustments originating from trade policy shifts in the United States have created a complex set of cost, supply chain, and sourcing implications for AI-enabled construction technologies. Tariffs applied to imported hardware components such as sensors, drones, and specialized equipment raise procurement costs and alter the calculus around local versus international sourcing. In turn, those increased hardware costs often accelerate interest in software- and services-led solutions that can extract more value from existing equipment inventories through improved analytics, predictive models, and remote optimization.
Moreover, tariffs can influence vendor decisions around regional manufacturing, spurring greater investment in localized assembly and supplier development to mitigate exposure to cross-border levies. For project teams, this has practical consequences: procurement cycles may lengthen as supply routes are reassessed, contingency inventories may expand to avoid schedule interruptions, and total cost considerations shift toward lifecycle performance rather than initial price alone. In parallel, the tariffs incentivize closer collaboration between contractors, owners, and technology providers to redesign procurement frameworks that prioritize resilience, modularity, and service continuity over purely upfront cost metrics.
Comprehensive segmentation that maps solution types, application domains, enabling technologies, deployment choices, and end-user needs to prioritize investment and implementation pathways
A nuanced segmentation framework clarifies where value is realized and which capabilities matter most to different stakeholders. When solutions are considered through the lens of hardware, services, and software, the hardware component centers on field devices such as drones, heavy equipment fitted with telemetry, and diverse sensor types that collect spatial, environmental, and performance data. Services encompass consulting to define use cases and ROI, implementation that integrates systems into existing workflows, and ongoing support and maintenance that preserves uptime and system fidelity. Software is differentiated by licensing approach, where perpetual licenses imply long-term on-premises commitments while subscription licenses enable cloud-based continuous improvement and more rapid feature delivery.
Application-specific segmentation illuminates functional priorities and technical requirements across asset management, building information modeling, equipment maintenance, planning and design, project management, quality control, and safety management. Asset management use cases emphasize predictive maintenance and tracking to extend lifecycle performance, while building information modeling spans 3D modeling for spatial accuracy, 4D scheduling to synchronize time with geometry, and 5D cost estimation that integrates cost data into modeled scenarios. Equipment maintenance relies on condition monitoring and fault diagnosis to reduce unplanned downtime, and planning and design subdivides into architecture, MEP, and structural design disciplines each requiring tailored AI support. Project management activities focus on cost estimation, resource allocation, and scheduling accuracy; quality control prioritizes defect detection and inspection at scale; and safety management targets compliance oversight and incident detection to reduce exposure and improve worker protection.
Technology segmentation highlights the underlying capabilities that enable these applications. Computer vision, delivered through 2D imaging or advanced 3D imaging, powers site capture and visual analytics; expert systems-whether knowledge-based or rule-based-support decision automation for domain-specific tasks; the Internet of Things connects devices, smart sensors, and wearables to create a pervasive data layer; machine learning techniques such as supervised, unsupervised, and reinforcement learning underpin predictive and prescriptive models; natural language processing supports language generation, speech recognition, and text mining to extract insights from reports and logs; and robotics spans autonomous vehicles, aerial drones, and robotic arms to automate physical tasks and sampling. Deployment mode further differentiates operational models, where cloud options-including hybrid, private, or public cloud architectures-facilitate scalability and continuous delivery, while on-premises choices, executed on internal servers or private data centers, address data sovereignty and latency concerns. Finally, end user segmentation clarifies buyer pain points and adoption pathways: architects and engineers require design-oriented analytics across architectural, civil, and MEP roles; building owners and facility managers need solutions that work in both commercial and residential contexts; contractors, whether general or specialty, prioritize efficiency, schedule certainty, and site safety; and government entities, at federal and local levels, focus on compliance, public works optimization, and community impact.
How regional regulatory frameworks, procurement preferences, and industrial capabilities are shaping differentiated adoption pathways across the Americas, EMEA, and Asia-Pacific
Regional dynamics exert a powerful influence on technology adoption curves, regulatory priorities, and the structure of supplier networks. In the Americas, strong private sector investment and an emphasis on digital procurement have accelerated adoption in large commercial projects, while regional trade policies and labor market dynamics continue to shape the adoption rate of hardware-intensive solutions. North American clients increasingly demand integrated platforms that combine BIM, real-time monitoring, and predictive asset management, and that expectation is driving vendors to offer more interoperable and service-rich packages.
Meanwhile, Europe, Middle East & Africa present a heterogeneous environment where regulatory complexity and sustainability mandates influence procurement and deployment. European jurisdictions emphasize decarbonization and lifecycle accountability, which favors digital twins and analytics that can demonstrate embodied carbon and operational efficiency. In the Middle East, large infrastructure programs and smart city initiatives create fertile ground for robotics, autonomous systems, and large-scale digital infrastructure, while parts of Africa are seeing innovative leapfrogging where mobile-first and sensor-driven approaches address unique logistical challenges.
Across the Asia-Pacific region, high infrastructure growth rates and strong manufacturing bases are accelerating investment in automation and localized production of sensors and equipment. Countries with dense urbanization and advanced construction ecosystems are at the forefront of integrating AI into planning and on-site operations, often combining domestic champions with multinational technology partners to scale deployments quickly. Collectively, these regional patterns demonstrate that successful vendors and adopters tailor their offerings to local regulatory contexts, supply chain realities, and client expectations, and that regional hubs will continue to drive prototype-to-scale transitions.
Insights into competitive dynamics where traditional equipment providers, software specialists, and integrators converge to deliver interoperable solutions and outcome-driven services
Competitive dynamics are evolving as legacy engineering and equipment companies converge with software-first entrants to deliver integrated solutions. Established players with deep domain expertise and extensive installed bases are investing in software layers, cloud connectivity, and partnerships to modernize offerings and preserve long-term customer relationships. At the same time, specialist software vendors and startups are leveraging advanced analytics, computer vision, and robotics to create focused capabilities in areas such as automated inspection, digital twin orchestration, and predictive maintenance.
This hybrid competitive environment rewards firms that can bridge domain knowledge with data science talent and demonstrate measurable operational outcomes. Strategic approaches include vertical integration to control hardware-to-software value chains, open platforms that encourage third-party innovation, and managed services that package outcomes for asset owners and contractors. Partnerships between equipment manufacturers, cloud providers, and industrial AI specialists are becoming more commonplace, providing clients with bundled solutions that combine hardware reliability, scalable compute, and advanced analytics. For buyers, this means procurement decisions increasingly weigh interoperability, data governance, and the vendor’s capacity to support long-term service models alongside immediate functional capabilities.
Actionable strategic playbook for leaders to align data governance, workforce transformation, procurement practices, and phased technology adoption for measurable outcomes
Leaders seeking to capture strategic advantage should focus on building organizational capabilities around data, people, and process. First, invest in data hygiene and integration so that disparate sources-from drones, sensors, and BIM repositories-can be normalized for consistent analytics and decision-making. Clear data governance frameworks should determine ownership, access, retention, and quality standards to enable reliable model training and to meet regulatory imperatives. Second, prioritize workforce transformation by developing cross-functional teams that combine construction domain expertise with data science, systems engineering, and change management skills; this hybrid talent base will accelerate practical deployments and foster continuous improvement.
In parallel, shape procurement and vendor engagement to favor modularity and outcomes. Contracts should align incentives through performance-based clauses, and proof-of-concept pathways should be structured to validate interoperability and measurable benefits at scale. From a technology standpoint, adopt a phased approach that couples quick wins-such as automated inspections and safety monitoring-with longer-term initiatives like digital twins and prescriptive maintenance. Finally, cultivate external partnerships with suppliers, research institutions, and regulatory bodies to co-develop standards, share lessons learned, and accelerate the diffusion of proven practices across portfolios.
A rigorous mixed-methods research approach combining expert interviews, operational case studies, and triangulated validation to produce actionable and transferable insights
The research methodology underpinning these insights combines qualitative expert interviews, cross-industry case study analysis, and a systematic review of technical literature and applied deployments. Primary engagement included structured conversations with owners, contractors, technology vendors, and standards bodies to surface practical challenges and successful implementation patterns. Case studies were selected to represent a range of project types, deployment scales, and regional contexts so that findings emphasize transferability and operational detail rather than theoretical constructs.
Analytical techniques emphasized triangulation: technical claims from vendors were validated against real-world performance indicators and operator feedback, and technology capability statements were assessed for integration complexity, data requirements, and security implications. The methodology also accounted for supply chain and policy influences by mapping vendor ecosystems, component sourcing pathways, and regulatory constraints to understand how these factors shape adoption velocity and implementation risk.
Synthesis of operational priorities and strategic imperatives that summarize how AI integration drives sustained improvements in safety, schedule, quality, and asset performance
In sum, artificial intelligence is reshaping the construction industry by turning data into actionable intelligence that improves safety, schedule performance, and asset outcomes. Adoption is not uniformly rapid, but where AI is integrated into governance, procurement, and daily operational routines, organizations realize enduring benefits that extend beyond one-off efficiency gains. The practical path forward requires aligning technical capabilities with organizational readiness, investing in interoperable platforms, and rethinking procurement to prioritize lifecycle performance and resilience.
As stakeholders plan the next phase of digital transformation, the emphasis should be on modular, measurable deployments that can be scaled across portfolios, supported by clear data governance and workforce development. By doing so, owners, contractors, and designers will be better equipped to deliver projects that meet modern expectations for speed, quality, safety, and sustainability.
Note: PDF & Excel + Online Access - 1 Year
Framing the strategic imperative for artificial intelligence adoption across the construction lifecycle to guide investment, governance, and operational transformation decisions
The built environment is undergoing a methodological and technological shift as artificial intelligence embeds itself into the workflows, systems, and decision frameworks that underpin planning, construction, and asset operations. This introduction orients senior leaders to the prevailing dynamics, clarifying why AI is no longer an aspirational capability but an operational imperative across project lifecycles. It highlights the interplay between data availability, sensor proliferation, and algorithmic maturity, and explains how these forces together realign risk profiles, cost structures, and competitive differentiation for stakeholders across the value chain.
By situating AI adoption within practical operational contexts, the introduction outlines the types of outcomes organizations can prioritize-improved schedule adherence, enhanced safety performance, reduced rework, and more accurate cost and resource planning. It also establishes the report’s scope and approach, emphasizing applied use cases and strategic implications rather than purely technical exposition, thereby preparing readers to interpret subsequent sections with an executive lens toward investment, governance, and capability-building.
How emerging AI technologies and evolving procurement expectations are reconfiguring construction workflows, vendor roles, and organizational governance across project lifecycles
The landscape of construction is being transformed by a convergence of technology, regulatory shifts, and new expectations for speed and sustainability. AI-driven workflows are altering how designs are validated, schedules are optimized, and field conditions are monitored, creating a faster feedback loop from site data to engineering decisions. This transition has produced new vendor archetypes and integrators who combine domain expertise with advanced analytics, blurring traditional boundaries between equipment manufacturers, software vendors, and services providers.
Concurrently, rising client expectations for transparency and accountability are reshaping procurement and contracting models, encouraging the adoption of digital twins, real-time monitoring, and predictive capabilities. As a result, organizations that embed AI into governance structures and operational routines are better positioned to capture efficiency gains and mitigate downstream risks, while those that delay integration face escalating costs of retrofitting legacy systems and retraining dispersed workforces.
Understanding the multifaceted operational and procurement consequences of recent United States tariff shifts on hardware supply chains and project risk management in construction
Recent tariff adjustments originating from trade policy shifts in the United States have created a complex set of cost, supply chain, and sourcing implications for AI-enabled construction technologies. Tariffs applied to imported hardware components such as sensors, drones, and specialized equipment raise procurement costs and alter the calculus around local versus international sourcing. In turn, those increased hardware costs often accelerate interest in software- and services-led solutions that can extract more value from existing equipment inventories through improved analytics, predictive models, and remote optimization.
Moreover, tariffs can influence vendor decisions around regional manufacturing, spurring greater investment in localized assembly and supplier development to mitigate exposure to cross-border levies. For project teams, this has practical consequences: procurement cycles may lengthen as supply routes are reassessed, contingency inventories may expand to avoid schedule interruptions, and total cost considerations shift toward lifecycle performance rather than initial price alone. In parallel, the tariffs incentivize closer collaboration between contractors, owners, and technology providers to redesign procurement frameworks that prioritize resilience, modularity, and service continuity over purely upfront cost metrics.
Comprehensive segmentation that maps solution types, application domains, enabling technologies, deployment choices, and end-user needs to prioritize investment and implementation pathways
A nuanced segmentation framework clarifies where value is realized and which capabilities matter most to different stakeholders. When solutions are considered through the lens of hardware, services, and software, the hardware component centers on field devices such as drones, heavy equipment fitted with telemetry, and diverse sensor types that collect spatial, environmental, and performance data. Services encompass consulting to define use cases and ROI, implementation that integrates systems into existing workflows, and ongoing support and maintenance that preserves uptime and system fidelity. Software is differentiated by licensing approach, where perpetual licenses imply long-term on-premises commitments while subscription licenses enable cloud-based continuous improvement and more rapid feature delivery.
Application-specific segmentation illuminates functional priorities and technical requirements across asset management, building information modeling, equipment maintenance, planning and design, project management, quality control, and safety management. Asset management use cases emphasize predictive maintenance and tracking to extend lifecycle performance, while building information modeling spans 3D modeling for spatial accuracy, 4D scheduling to synchronize time with geometry, and 5D cost estimation that integrates cost data into modeled scenarios. Equipment maintenance relies on condition monitoring and fault diagnosis to reduce unplanned downtime, and planning and design subdivides into architecture, MEP, and structural design disciplines each requiring tailored AI support. Project management activities focus on cost estimation, resource allocation, and scheduling accuracy; quality control prioritizes defect detection and inspection at scale; and safety management targets compliance oversight and incident detection to reduce exposure and improve worker protection.
Technology segmentation highlights the underlying capabilities that enable these applications. Computer vision, delivered through 2D imaging or advanced 3D imaging, powers site capture and visual analytics; expert systems-whether knowledge-based or rule-based-support decision automation for domain-specific tasks; the Internet of Things connects devices, smart sensors, and wearables to create a pervasive data layer; machine learning techniques such as supervised, unsupervised, and reinforcement learning underpin predictive and prescriptive models; natural language processing supports language generation, speech recognition, and text mining to extract insights from reports and logs; and robotics spans autonomous vehicles, aerial drones, and robotic arms to automate physical tasks and sampling. Deployment mode further differentiates operational models, where cloud options-including hybrid, private, or public cloud architectures-facilitate scalability and continuous delivery, while on-premises choices, executed on internal servers or private data centers, address data sovereignty and latency concerns. Finally, end user segmentation clarifies buyer pain points and adoption pathways: architects and engineers require design-oriented analytics across architectural, civil, and MEP roles; building owners and facility managers need solutions that work in both commercial and residential contexts; contractors, whether general or specialty, prioritize efficiency, schedule certainty, and site safety; and government entities, at federal and local levels, focus on compliance, public works optimization, and community impact.
How regional regulatory frameworks, procurement preferences, and industrial capabilities are shaping differentiated adoption pathways across the Americas, EMEA, and Asia-Pacific
Regional dynamics exert a powerful influence on technology adoption curves, regulatory priorities, and the structure of supplier networks. In the Americas, strong private sector investment and an emphasis on digital procurement have accelerated adoption in large commercial projects, while regional trade policies and labor market dynamics continue to shape the adoption rate of hardware-intensive solutions. North American clients increasingly demand integrated platforms that combine BIM, real-time monitoring, and predictive asset management, and that expectation is driving vendors to offer more interoperable and service-rich packages.
Meanwhile, Europe, Middle East & Africa present a heterogeneous environment where regulatory complexity and sustainability mandates influence procurement and deployment. European jurisdictions emphasize decarbonization and lifecycle accountability, which favors digital twins and analytics that can demonstrate embodied carbon and operational efficiency. In the Middle East, large infrastructure programs and smart city initiatives create fertile ground for robotics, autonomous systems, and large-scale digital infrastructure, while parts of Africa are seeing innovative leapfrogging where mobile-first and sensor-driven approaches address unique logistical challenges.
Across the Asia-Pacific region, high infrastructure growth rates and strong manufacturing bases are accelerating investment in automation and localized production of sensors and equipment. Countries with dense urbanization and advanced construction ecosystems are at the forefront of integrating AI into planning and on-site operations, often combining domestic champions with multinational technology partners to scale deployments quickly. Collectively, these regional patterns demonstrate that successful vendors and adopters tailor their offerings to local regulatory contexts, supply chain realities, and client expectations, and that regional hubs will continue to drive prototype-to-scale transitions.
Insights into competitive dynamics where traditional equipment providers, software specialists, and integrators converge to deliver interoperable solutions and outcome-driven services
Competitive dynamics are evolving as legacy engineering and equipment companies converge with software-first entrants to deliver integrated solutions. Established players with deep domain expertise and extensive installed bases are investing in software layers, cloud connectivity, and partnerships to modernize offerings and preserve long-term customer relationships. At the same time, specialist software vendors and startups are leveraging advanced analytics, computer vision, and robotics to create focused capabilities in areas such as automated inspection, digital twin orchestration, and predictive maintenance.
This hybrid competitive environment rewards firms that can bridge domain knowledge with data science talent and demonstrate measurable operational outcomes. Strategic approaches include vertical integration to control hardware-to-software value chains, open platforms that encourage third-party innovation, and managed services that package outcomes for asset owners and contractors. Partnerships between equipment manufacturers, cloud providers, and industrial AI specialists are becoming more commonplace, providing clients with bundled solutions that combine hardware reliability, scalable compute, and advanced analytics. For buyers, this means procurement decisions increasingly weigh interoperability, data governance, and the vendor’s capacity to support long-term service models alongside immediate functional capabilities.
Actionable strategic playbook for leaders to align data governance, workforce transformation, procurement practices, and phased technology adoption for measurable outcomes
Leaders seeking to capture strategic advantage should focus on building organizational capabilities around data, people, and process. First, invest in data hygiene and integration so that disparate sources-from drones, sensors, and BIM repositories-can be normalized for consistent analytics and decision-making. Clear data governance frameworks should determine ownership, access, retention, and quality standards to enable reliable model training and to meet regulatory imperatives. Second, prioritize workforce transformation by developing cross-functional teams that combine construction domain expertise with data science, systems engineering, and change management skills; this hybrid talent base will accelerate practical deployments and foster continuous improvement.
In parallel, shape procurement and vendor engagement to favor modularity and outcomes. Contracts should align incentives through performance-based clauses, and proof-of-concept pathways should be structured to validate interoperability and measurable benefits at scale. From a technology standpoint, adopt a phased approach that couples quick wins-such as automated inspections and safety monitoring-with longer-term initiatives like digital twins and prescriptive maintenance. Finally, cultivate external partnerships with suppliers, research institutions, and regulatory bodies to co-develop standards, share lessons learned, and accelerate the diffusion of proven practices across portfolios.
A rigorous mixed-methods research approach combining expert interviews, operational case studies, and triangulated validation to produce actionable and transferable insights
The research methodology underpinning these insights combines qualitative expert interviews, cross-industry case study analysis, and a systematic review of technical literature and applied deployments. Primary engagement included structured conversations with owners, contractors, technology vendors, and standards bodies to surface practical challenges and successful implementation patterns. Case studies were selected to represent a range of project types, deployment scales, and regional contexts so that findings emphasize transferability and operational detail rather than theoretical constructs.
Analytical techniques emphasized triangulation: technical claims from vendors were validated against real-world performance indicators and operator feedback, and technology capability statements were assessed for integration complexity, data requirements, and security implications. The methodology also accounted for supply chain and policy influences by mapping vendor ecosystems, component sourcing pathways, and regulatory constraints to understand how these factors shape adoption velocity and implementation risk.
Synthesis of operational priorities and strategic imperatives that summarize how AI integration drives sustained improvements in safety, schedule, quality, and asset performance
In sum, artificial intelligence is reshaping the construction industry by turning data into actionable intelligence that improves safety, schedule performance, and asset outcomes. Adoption is not uniformly rapid, but where AI is integrated into governance, procurement, and daily operational routines, organizations realize enduring benefits that extend beyond one-off efficiency gains. The practical path forward requires aligning technical capabilities with organizational readiness, investing in interoperable platforms, and rethinking procurement to prioritize lifecycle performance and resilience.
As stakeholders plan the next phase of digital transformation, the emphasis should be on modular, measurable deployments that can be scaled across portfolios, supported by clear data governance and workforce development. By doing so, owners, contractors, and designers will be better equipped to deliver projects that meet modern expectations for speed, quality, safety, and sustainability.
Note: PDF & Excel + Online Access - 1 Year
Table of Contents
197 Pages
- 1. Preface
- 1.1. Objectives of the Study
- 1.2. Market Segmentation & Coverage
- 1.3. Years Considered for the Study
- 1.4. Currency
- 1.5. Language
- 1.6. Stakeholders
- 2. Research Methodology
- 3. Executive Summary
- 4. Market Overview
- 5. Market Insights
- 5.1. Integration of generative design algorithms to optimize structural components and material usage
- 5.2. Deployment of autonomous heavy machinery with AI-enabled obstacle detection for site safety
- 5.3. Implementation of predictive maintenance platforms leveraging IoT sensors and machine learning
- 5.4. Real-time progress tracking through AI-driven computer vision and drone-based site monitoring
- 5.5. Use of natural language processing tools for automated permit application and compliance management
- 5.6. Application of digital twin technology combined with AI simulations for construction planning and risk mitigation
- 6. Cumulative Impact of United States Tariffs 2025
- 7. Cumulative Impact of Artificial Intelligence 2025
- 8. AI in Construction Market, by Solution
- 8.1. Hardware
- 8.1.1. Drones
- 8.1.2. Equipment
- 8.1.3. Sensors
- 8.2. Services
- 8.2.1. Consulting
- 8.2.2. Implementation
- 8.2.3. Support & Maintenance
- 8.3. Software
- 8.3.1. Perpetual License
- 8.3.2. Subscription License
- 9. AI in Construction Market, by Technology
- 9.1. Computer Vision
- 9.1.1. 2D Imaging
- 9.1.2. 3D Imaging
- 9.2. Expert Systems
- 9.2.1. Knowledge Based Systems
- 9.2.2. Rule Based Systems
- 9.3. Internet Of Things
- 9.3.1. Connected Devices
- 9.3.2. Smart Sensors
- 9.3.3. Wearables
- 9.4. Machine Learning
- 9.4.1. Reinforcement Learning
- 9.4.2. Supervised Learning
- 9.4.3. Unsupervised Learning
- 9.5. Natural Language Processing
- 9.5.1. Language Generation
- 9.5.2. Speech Recognition
- 9.5.3. Text Mining
- 9.6. Robotics
- 9.6.1. Autonomous Vehicles
- 9.6.2. Drones
- 9.6.3. Robotic Arms
- 10. AI in Construction Market, by Application
- 10.1. Asset Management
- 10.1.1. Predictive Maintenance
- 10.1.2. Tracking
- 10.2. Building Information Modeling
- 10.2.1. 3D Modeling
- 10.2.2. 4D Scheduling
- 10.2.3. 5D Cost Estimation
- 10.3. Equipment Maintenance
- 10.3.1. Condition Monitoring
- 10.3.2. Fault Diagnosis
- 10.4. Planning & Design
- 10.4.1. Architecture Design
- 10.4.2. MEP Design
- 10.4.3. Structural Design
- 10.5. Project Management
- 10.5.1. Cost Estimation
- 10.5.2. Resource Allocation
- 10.5.3. Scheduling
- 10.6. Quality Control
- 10.6.1. Defect Detection
- 10.6.2. Inspection
- 10.7. Safety Management
- 10.7.1. Compliance Management
- 10.7.2. Incident Detection
- 11. AI in Construction Market, by Deployment Mode
- 11.1. Cloud
- 11.1.1. Hybrid Cloud
- 11.1.2. Private Cloud
- 11.1.3. Public Cloud
- 11.2. On Premises
- 11.2.1. Internal Servers
- 11.2.2. Private Data Centers
- 12. AI in Construction Market, by End User
- 12.1. Architects & Engineers
- 12.1.1. Architects
- 12.1.2. Civil Engineers
- 12.1.3. MEP Engineers
- 12.2. Building Owners & Facility Managers
- 12.2.1. Commercial
- 12.2.2. Residential
- 12.3. Contractors
- 12.3.1. General Contractors
- 12.3.2. Specialty Contractors
- 12.4. Governments & Municipalities
- 12.4.1. Federal Governments
- 12.4.2. Local Governments
- 13. AI in Construction Market, by Region
- 13.1. Americas
- 13.1.1. North America
- 13.1.2. Latin America
- 13.2. Europe, Middle East & Africa
- 13.2.1. Europe
- 13.2.2. Middle East
- 13.2.3. Africa
- 13.3. Asia-Pacific
- 14. AI in Construction Market, by Group
- 14.1. ASEAN
- 14.2. GCC
- 14.3. European Union
- 14.4. BRICS
- 14.5. G7
- 14.6. NATO
- 15. AI in Construction Market, by Country
- 15.1. United States
- 15.2. Canada
- 15.3. Mexico
- 15.4. Brazil
- 15.5. United Kingdom
- 15.6. Germany
- 15.7. France
- 15.8. Russia
- 15.9. Italy
- 15.10. Spain
- 15.11. China
- 15.12. India
- 15.13. Japan
- 15.14. Australia
- 15.15. South Korea
- 16. Competitive Landscape
- 16.1. Market Share Analysis, 2024
- 16.2. FPNV Positioning Matrix, 2024
- 16.3. Competitive Analysis
- 16.3.1. Autodesk Inc.
- 16.3.2. IBM Corporation
- 16.3.3. Microsoft Corporation
- 16.3.4. Oracle Corporation
- 16.3.5. SAP SE
- 16.3.6. NVIDIA Corporation
- 16.3.7. Bentley Systems Incorporated
- 16.3.8. Trimble Inc.
- 16.3.9. Dassault Systèmes SE
- 16.3.10. Procore Technologies Inc.
- 16.3.11. Buildots Ltd.
- 16.3.12. OpenSpace AI Inc.
- 16.3.13. Assignar Pty Ltd.
- 16.3.14. ALICE Technologies Inc.
- 16.3.15. Aurora Computer Services Ltd.
- 16.3.16. Versatile Natures Ltd.
- 16.3.17. StructionSite Inc.
- 16.3.18. Rendra Systems Inc.
- 16.3.19. Deepomatic SAS
- 16.3.20. Dusty Robotics Inc.
- 16.3.21. Canvas Construction Inc.
- 16.3.22. BuildStream Technologies Inc.
- 16.3.23. Scaled Robotics SL
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

