Table below presents the key metrics for dyslipidemia in the eight major pharmaceutical markets (8MM) (US, France, Germany, Italy, Spain, UK, Japan, and China).

<table>
<thead>
<tr>
<th>Dyslipidemia: Key Metrics in Eight Major Pharmaceutical Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 Epidemiology</td>
</tr>
<tr>
<td>Prevalent dyslipidemia population</td>
</tr>
<tr>
<td>Treated dyslipidemia population</td>
</tr>
<tr>
<td>2013 Market Sales</td>
</tr>
<tr>
<td>US</td>
</tr>
<tr>
<td>5EU</td>
</tr>
<tr>
<td>Japan</td>
</tr>
<tr>
<td>China</td>
</tr>
<tr>
<td>Pipeline Assessment</td>
</tr>
<tr>
<td>Number of drugs in Phase I–II</td>
</tr>
<tr>
<td>Number of first-in-class drugs (Phase III+)</td>
</tr>
<tr>
<td>Most Promising Pipeline Drugs</td>
</tr>
<tr>
<td>Evolocumab (Amgen)</td>
</tr>
<tr>
<td>Alirocumab (Sanofi/Regeneron)</td>
</tr>
<tr>
<td>Evacetrapib (Eli Lilly)</td>
</tr>
<tr>
<td>ETC-1002 (Esperion Therapeutics, Inc.)</td>
</tr>
<tr>
<td>Key Events (2013–2023)</td>
</tr>
<tr>
<td>IMPROVE-IT Phase III clinical trial demonstrates that Merck’s Zetia (ezetimibe) can help prevent events related to cardiovascular disease (CVD) as a result of low density lipoprotein (LDL)-lowering when added to Zocor (simvastatin) – November 2014</td>
</tr>
<tr>
<td>Amgen launches the first proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibody (mAb), evolocumab – Q2 2015</td>
</tr>
<tr>
<td>AstraZeneca’s Crestor (rosuvastatin) loses patent protection in the US in 2016</td>
</tr>
<tr>
<td>Eli Lilly launches the first cholesteryl ester transfer protein (CETP) inhibitor, evacetrapib – 2017</td>
</tr>
<tr>
<td>Esperion launches the novel lipid modulating drug, ETC-1002 – 2020</td>
</tr>
</tbody>
</table>

2023 Market Sales

<table>
<thead>
<tr>
<th>Region</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>$23.4bn</td>
</tr>
<tr>
<td>5EU</td>
<td>$5.5bn</td>
</tr>
<tr>
<td>Japan</td>
<td>$2.1bn</td>
</tr>
<tr>
<td>China</td>
<td>$6.9bn</td>
</tr>
<tr>
<td>Total</td>
<td>$37.9bn</td>
</tr>
</tbody>
</table>

Source: GlobalData

SEU = France, Germany, Italy, Spain, and UK; IMPROVE-IT = IMProved Reduction of Outcomes: Vytorin Efficacy International Trial

Sales for Dyslipidemia by Region, 2013–2023

This report focuses on the dyslipidemia pharmaceutical market from 2013–2023 in the 8MM. Throughout this report, these eight markets will be referred to as the “global market.” In the 2013 base year, the global dyslipidemia market was worth $15.4 billion, including both branded and generic drugs. Branded drug sales contributed 72% to the 2013 market, with sales valued at $11.0 billion. Generic drug sales comprised the remaining 28% of the market in 2013, with sales valued at $4.4 billion. The US dominated the dyslipidemia market in 2013, with sales reaching $10.1 billion, or roughly 65% of all global dyslipidemia sales. The outsized impact of the US on the global market is attributable to its large prevalent population of dyslipidemia patients and the dramatically higher cost of pharmaceuticals relative to the other major pharmaceutical markets.
Executive Summary

By 2023, GlobalData expects that the global dyslipidemia market will more than double in size, with a total value at $37.9 billion. Of this, 71%, or $26.9 billion of the 2023 market will be attributable to branded drug sales. The remaining 29%, or $11.0 billion, will come from generic drug sales. The market shares, by nation, will remain roughly steady between the base year and 2023. The US will continue to contribute the vast majority of sales to the dyslipidemia market – roughly 62% – in 2023. The dramatic increase in overall global market value is attributable to the launch of several drugs with definite blockbuster potential, which are currently in the late-stage development pipeline. These include three proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (human monoclonal antibodies [mAbs] to PCSK9) that have the potential to reshape the dyslipidemia landscape. Additionally, the launch of the cholesteryl ester transfer protein (CETP) inhibitors and novel agents, such as Esperion’s ETC-1002 and Cerenis’ CER-001, will add new weapons to the dyslipidemia armamentarium, providing more options to high-risk patients who cannot tolerate, or do not sufficiently respond to, statin therapy.

The following figure shows the market share for the 8MM covered in this forecast in both the 2013 base year and the final forecast year, 2023. Although the overall global market value will increase significantly, the relative market share for each of the 8MM covered here will remain roughly stable, with the largest fluctuations derived from a slight drop in US market share and an increase in China’s market share.

The Launch of the PCSK9 mAbs and the CETP Inhibitors Will Drive Revenue Growth in the Dyslipidemia Market

Entering the 2013 base year, the dyslipidemia market was already mature, with a battery of therapies – the statins, ezetimibe, bile acid sequestrants, fibrates, niacin, omega-3 fish oils,
and emerging familial hypercholesterolemia agents – already available to serve the broad swath of patients and morbidities that comprise the dyslipidemia treatment space. Over the course of the forecast period, a proverbial “changing of the guard” will befall the dyslipidemia space, at least with regard to drug sales. In 2016, the last major branded statin, AstraZeneca’s Crestor (rosuvastatin), is expected to face generic competition for the first time, joining the ranks of the historical statin blockbusters, Merck’s Zocor (simvastatin) and Pfizer’s Lipitor (atorvastatin). On the whole, GlobalData expects that statins will remain the undisputed first-line treatment for almost all forms of dyslipidemia. However, the genericization of the statin class will serve to upend the sales landscape.

Two major revenue-generating events are expected to drive the change from the emerging pipeline: (1) the launch of the PCSK9 mAbs and (2) the launch of the CETP inhibitors. Both drug classes will serve niche patient subpopulations within the low-density lipoprotein cholesterol (LDL-C)-reducing dyslipidemia treatment space. They will be forced to compete not only with each other, but with established therapies. Their exploitation of novel mechanisms of action will give them an edge in achieving success towards this end. Ultimately, however, these drugs will need to perform successfully in major Phase III cardiovascular (CV) outcomes trials if they hope to gain acceptance into the broader dyslipidemia treatment space.

GlobalData expects that the major players in the PCSK9 space will be Amgen, Sanofi, Regeneron, and Pfizer. In the CETP inhibitor market, Eli Lilly and Merck will be the major players. However, the small company, Dezima Pharma, is making a play in the CETP space as well, with the promising agent, TA-8995, which has performed well through Phase II studies.

Atherosclerotic Plaque Regression, Improved Side Effect Profiles, and Rare Disease Treatments Remain the Greatest Unmet Needs in Dyslipidemia

To date, the statins and ezetimibe are the only lipid-modulating agents that have been proven to reduce CV events in major Phase III outcomes.
Executive Summary

For ezetimibe, this was only revealed recently in the groundbreaking IMPROVE-IT study (IMPproved Reduction of Outcomes: Vytorin Efficacy International Trial). Specifically, the long-term use of these drugs have demonstrated that reducing levels of LDL-C with drug therapy can produce measurable reductions in CV outcomes such as heart attack, stroke, and CV-death, with the so-called pleiotropic effects of statins notwithstanding. Despite the widespread use of these demonstrably successful classes of LDL-C lowering drugs, the incident and recurrent CV event rates for patients with dyslipidemia is astoundingly high. This is largely a result of the inability of current therapies to fully reverse the effects of established atherosclerosis.

As a result, there remains a major unmet need for drug treatments that can not only reduce LDL-C, but that can afford atherosclerotic plaque regression. This is a tall order, in that to regress a plaque – to effectively “clean” a diseased artery – atherothrombotic events must be avoided in the process. Thus, new therapies are needed that can reduce the fat and cholesterol content of established plaques as well as prevent inflammatory processes that lead to thrombosis, all while safely effecting the structural changes that can return a diseased artery back to a healthy state. Thus, it is entirely reasonable to suggest that entire suites of new drugs will be required to achieve this end. Furthermore, new drugs will likely require the simultaneous use of antithrombotic therapies such as antiplatelet and anticoagulatory agents to ensure safe and stable plaque regression.

In the more immediate future, it will be important for drug makers to develop agents that can reduce LDL-C without causing the adverse muscular side effects that are associated with statin use. Statin-related myopathies, myalgias, and, at worst, statin-induced rhabdomyolysis, are all causes for the terrible compliance issues associated with statin use. It is widely accepted that, because of these adverse effects, roughly 50% of patients will terminate their statin use following one year of therapy. The PCSK9s, the CETPs, and drugs like Esperion’s ETC-1002, are all likely candidates to fulfill this key unmet need.

In the dyslipidemia field, homozygous familial hypercholesterolemia (HoFH) is the most severe form of hypercholesterolemia, with stubbornly drug-refractory LDL-C levels that can be well into the hundreds of milligrams per deciliter. There are currently only a few novel therapies, Isis/Genzyme’s Kynamro (mipomersen) and Aegerion’s Juxtapid (lomitapide), that specifically and effectively treat patients with HoFH, and both are associated with potentially severe adverse effects associated with hepatic toxicity. The PCSK9s are expected to address some of this unmet need, but there is a lot of space for improvement in this field. As HoFH is a rare disease, potentially only impacting one in a million...
Executive Summary

people, a safe and effective therapy could command particularly high prices.

Leading Pipeline Agents in Dyslipidemia

During the forecast period, Amgen, Sanofi/Regeneron, and Pfizer are all expected to launch a PCSK9 mAb. Both Amgen and Sanofi are expected to launch their PCSK9s, evolocumab and alirocumab, respectively, in 2015. GlobalData expects Pfizer to launch its PCSK9, bococizumab, in 2018. At least initially, GlobalData expects that these novel agents will target a narrow population of patients: the roughly 5% that are intolerant or completely refractory to statin therapy. GlobalData’s forecast demonstrates that, even when restricted to this niche subpopulation, the PCSK9s have the potential to easily break the blockbuster threshold, both in the US and globally, due to the biologic-level pricing they will demand. All three PCSK9s are currently enrolled in major Phase III cardiovascular outcomes studies, which are not expected to have a major impact on sales until later in the forecast period, when they are scheduled to conclude.

Two major CETP inhibitor programs are currently being undertaken by Eli Lilly and Merck. GlobalData expects Eli Lilly’s evacetrapib to be the first-to-market CETP, with a launch anticipated in 2017. Merck is expected to launch its CETP, anacetrapib, the following year. Additionally, Dezima Pharma is expected to enter its CETP candidate, TA-8995 (DEZ-001), into Phase III studies in 2015. CETP inhibitors not only lower LDL-C, but they have been shown to dramatically raise high-density lipoprotein cholesterol (HDL-C). With recent clinical trials failing to show a benefit associated with raising HDL-C (such as the HPS2-THRIVE study of niacin), the importance of successful cardiovascular outcomes studies with the CETP inhibitors cannot be understated; HPS2-THRIVE: Heart Protection Study 2 – Treatment of HDL to Reduce the Incidence of Vascular Events. Indeed, GlobalData expects that their success at the regulatory level will depend upon their success in these trials. Assuming the CETPs can establish a cardiovascular benefit, they could become an important tool for favorably modulating pathogenic levels of LDL-C and HDL-C.

In keeping with the theme of serving niche patient segments within the dyslipidemia space, both Esperion Therapeutics, Inc., and Cerenis Therapeutics, Inc., are developing novel agents for the dyslipidemia space. GlobalData expects that Esperion will raise its novel LDL-C reducing agent, ETC-1002, into Phase III studies in 2015. ETC-1002’s unique mechanism of action may be able to serve patients with elevations of both LDL-C and triglycerides while avoiding the muscle-related side effects associated with statins. Cerenis recently received orphan designations for its HDL-C mimetic, CER-001, in the European Union (EU). This novel agent has the potential to serve several unmet needs in the dyslipidemia rare disease space.
In general, the drugs in the dyslipidemia pipeline will exploit novel mechanisms of action to better serve unmet needs within the space. Primarily, this means demonstrating the ability to reduce LDL-C and prevent cardiovascular events in patients who cannot tolerate statins or for whom statin therapy is insufficient to reduce LDL-C or cardiovascular risk. The genericization of the statins and the premium pricing (or biologic pricing, as with the PCSK9s and CER-001) of the emerging pipeline agents will spur the drastic changes that can be seen in the sales forecast presented herein, all while the statins remain the first-line drug therapy in the space overall.

What Do the Physicians Think?

The size of the drug-treated population of patients with dyslipidemia is expected to increase throughout the forecast period. At the most basic level, the overall prevalence of the disease will track with population growth in the 8MM. Interestingly, however, GlobalData Key Opinion Leaders (KOLs) from the US and the other seven major pharmaceutical markets (7MM) (France, Germany, Italy, Spain, UK, Japan, and China) believe that drug treatment rates will increase for different reasons. In the US, it is expected that the increasing number of individuals with health insurance coverage who are affected by the implementation of the Affordable Care Act (ACA), will cause the diagnosis rates and thus the drug treatment rates of dyslipidemia to increase. In all markets, it is believed that an increase in disease awareness will help increase diagnosis and treatment rates. In non-US markets, especially in China and Japan, KOLs attribute, at least in part, an increase in the prevalence of dyslipidemia to the increasing westernization of the culture.
“I think that the [diagnosis] rates will go up as awareness grows. I don't think it will necessarily be due to better diagnostic tools. I think it may be more relevant to more people having insurance coverage. And diagnosis and treatment of hyperlipidemia become things that are considered important in reimbursement panels. Hopefully, [diagnosis] will be up from 50% of people with any dyslipidemia to maybe 60 to 70%.”

US Key Opinion Leader

“But due to the westernization of lifestyles, not the diagnostic tool, the prevalence of dyslipidemia will increase in the future. The total cholesterol is increasing in the last 40 or 50 years, and triglyceride is also increasing in the last 20 or 30 years only in men. So, generally speaking, the prevalence of dyslipidemia is – will increase in the future. It’s irrespective of the diagnostic tool.”

Asia-Pacific Key Opinion Leader

“There are patient advocacy groups who are very active in supporting families with these diagnoses and will push screening of family members, etcetera. There are general health education programs, both from the government and medical charities. We will do opportunistic screening when cases appear to us. There’s a whole spectrum of those. And the lipid clinic will do exactly the same sort of thing.”

European Key Opinion Leader

Across all 8MM, KOLs agree that statins are the first-line drug treatment for dyslipidemia. Furthermore, they agree that ezetimibe is the standard second-line therapy. GlobalData found this to be the case, even when all other established lipid therapies were considered.

“Statin first, no question [for managing atherosclerotic cardiovascular disease (ASCVD)].”

US Key Opinion Leader

“First-line therapy is a statin. Depending on the problem, I would typically go with a potent statin. If they have very high LDL [low-density lipoprotein], as in familial hypercholesterolemia, and the LDL doesn’t go down enough, I will typically add a second drug, and my usual choice for that would be ezetimibe [Zetia].”

US Key Opinion Leader

“Dealing with secondary prevention, at the moment, what we’re doing is patients who are presenting with an ACS [acute coronary syndrome] – whether that’s an ST-elevation infarct or a non-ST elevation infarct – on getting atorvastatin 80 milligrams for 12 months and then going down to simvastatin 40 [milligrams] at the end of those 12 months, assuming that they have no further events. If there are particular reasons why we want to be more aggressive – for instance, they’ve had a second event despite high-dose statin – then they will often not down-titrate the drug. We will just continue at high-dose statin. In terms of primary prevention, again, we’re tending to go for pretty
Executive Summary

high-dose statins at an early stage. What we’re then doing is looking at those patients and if they’ve had a further event or if they’ve got a particularly high cholesterol to start with, then we are going for the highest-dose statin we can get to start with and often adding in something like ezetimibe [Zetia] on top of it.”

European Key Opinion Leader

“That would account for, if one looks at the data – and we have had the data from the pharmacy – probably 80 to 90% of patients will be on simvastatin and then another 10% will be on either rosuvastatin or atorvastatin. If they don’t reach the goal on that, we add in ezetimibe. Often, when we add ezetimibe, we would put the patient back on the simvastatin, because the ezetimibe is relatively expensive, and in the combination of simvastatin, that can usually reach the [LDL-C] goal in most patients.”

Asia-Pacific Key Opinion Leader

GlobalData KOLs agreed that the major pipeline drugs – the PCSK9s and the CETPs – are likely to be utilized as adjunctive therapies for patients with severe hyperlipidemias, or for patients who cannot tolerate statins. Furthermore, KOLs interviewed by GlobalData want to see positive results from major CV outcomes trials before they consider using these new drugs in the general dyslipidemic population.

“I’m expecting the outcomes [for PCSK9s] are going to be very positive, because I believe in the cholesterol hypothesis. Whether lowering LDL to 30 [milligrams per deciliter] as opposed to putting it down to 80 or 90 will make any difference, I remain to be convinced. We’ll see. It might – hypothetically, it makes sense. But as you know, there are lots of hypotheses that turn out to [be]… what do we say? – ‘A beautiful theory slain by an ugly fact.’ You really want to see the proof.”

US Key Opinion Leader

“It [whom it would be prescribed to] depends on the population studied in the [CETP inhibitor] outcomes trial. I would be unlikely to switch somebody off a statin. I would consider adding it [to a statin] or using it in patients who did not tolerate statins.”

US Key Opinion Leader
Executive Summary

“We don’t have surrogate outcome data [for PCSK9] from intracoronary imaging, for instance. We’re not going to have major MACE [major adverse cardiovascular event] type studies for two years, three years at least. Where do I see them [PCSK9s] being used? I see them being used probably firstly in the familial hypercholesterolemia [FH] patients who can’t take statins, or for the high-risk secondary prevention patients who can’t take statins. If you like, in that group of patients where we don’t have any other options – a patient can’t tolerate statins, you’ve got nothing else left – then we would be likely to use those drugs whilst we wait for the outcome of the Phase III trials. Or, as I say, in the FH group of patients.”

OUS Key Opinion Leader

“Of course, the preclinical data suggest the mechanism [of the CETP inhibitors] is effective and reduces atherosclerosis, but all the clinical data that we have so far is not really very supportive. It’s a bit worrying to think what the result will be with the two ongoing [CV outcomes trials of the] CETP inhibitors [evacetrapib and anacetrapib]. On balance, I would not be too hopeful that they will come out positive. I think it would depend very much on what patients are being treated and the choice of individual patients, and I suspect that hasn’t been selected to such an extent that it will come out strongly positive. If you think about the other studies like HPS2-THRIVE and the fibrate studies like ACCORD, because they selected such a wide group of patients, in the end, the result came out negative. If they’d selected a more specific group who might more clearly benefit, it could’ve been a positive result, and I think that might well be the same with the CETP inhibitors and the patient groups they’ve selected. They may not get a positive result.”

OUS Key Opinion Leader
Table of Contents

1 Table of Contents

1 Table of Contents ... 11
1.1 List of Tables .. 19
1.2 List of Figures .. 26

2 Introduction ... 28
2.1 Catalyst ... 28
2.2 Related Reports .. 29
2.3 Upcoming Related Reports ... 30

3 Disease Overview ... 31
3.1 Etiology and Pathophysiology ... 31
3.1.1 Etiology ... 31
3.1.2 Pathophysiology .. 33
3.2 Symptoms .. 37
3.3 Prognosis .. 37
3.4 Quality of Life .. 37

4 Epidemiology .. 38
4.1 Risk Factors and Comorbidities ... 38
4.2 Global and Historical Trends .. 39
4.2.1 US ... 40
4.2.2 5EU .. 40
4.2.3 Asia .. 42
4.3 Forecast Methodology ... 43
Table of Contents

4.3.1 Sources Used.. 51
4.3.2 Forecast Assumptions and Methods ... 57
4.3.3 Sources Not Used... 83

4.4 Prevalent Cases of Dyslipidemia... 84
4.4.1 Total Prevalent Cases of Dyslipidemia.. 84
4.4.2 Age-Specific Total Prevalent Cases of Dyslipidemia... 85
4.4.3 Sex-Specific Total Prevalent Cases of Dyslipidemia.. 87
4.4.4 Age-Standardized Total Prevalence of Dyslipidemia... 89

4.5 Epidemiological Forecast for Familial Hypercholesterolemia (2013–2023)................ 90
4.5.1 Total Prevalent Cases of Familial Hypercholesterolemia... 90

4.6 Epidemiological Forecast for Increased LDL-C (2013–2023)..................................... 91
4.6.1 Total Prevalent Cases of Increased LDL-C... 91
4.6.2 Age-Specific Total Prevalent Cases of Increased LDL-C... 93
4.6.3 Sex-Specific Total Prevalent Cases of Increased LDL-C... 95
4.6.4 Age-Standardized Total Prevalence of Increased LDL-C... 97

4.7 Epidemiological Forecast for Very High TG (≥500 mg/dL) (2013–2023).................... 98
4.7.1 Total Prevalent Cases of Very High TG (≥500 mg/dL).. 98
4.7.2 Age-Specific Total Prevalent Cases of Very High TG (≥500 mg/dL)............................ 100
4.7.3 Sex-Specific Total Prevalent Cases of Very High TG (≥500 mg/dL)............................ 102
4.7.4 Age-Standardized Total Prevalence of Very High TG (≥500 mg/dL)......................... 104

4.8 Discussion .. 105
4.8.1 Epidemiological Forecast Insight... 105
4.8.2 Limitations of the Analysis ... 106
Table of Contents

4.8.3 Strengths of the Analysis ... 107

5 Disease Management ... 108

5.1 Diagnosis and Treatment Overview ... 108

5.1.1 Diagnosis .. 108

5.1.2 Treatment Guidelines and Leading Prescribed Drugs ... 110

5.1.3 Clinical Practice ... 113

5.2 US .. 115

5.3 France .. 119

5.4 Germany ... 121

5.5 Italy .. 124

5.6 Spain ... 126

5.7 UK ... 128

5.8 Japan ... 131

5.9 China ... 133

6 Competitive Assessment ... 136

6.1 Overview .. 136

6.2 Product Profiles – Major Brands ... 140

6.2.1 Statins .. 140

6.2.2 Zetia (ezetimibe) .. 160

6.2.3 Vytorin (simvastatin/ezetimibe) ... 169

6.2.4 Liptruzet (atorvastatin/ezetimibe) .. 173

6.2.5 Niaspan (niacin extended-release) ... 177

6.2.6 Kynamro (mipomersen sodium) ... 183
Table of Contents

6.2.7 Juxtapid (lomitapide) ... 189
6.2.8 TriCor/Trilipix (fenofibrate/fenfibric acid) 195
6.2.9 Omega-3 Fatty Acids ... 200
6.2.10 Welchol (colesevelam HCl) and the Bile Acid Sequestrants ... 215

7 Unmet Need and Opportunity ... 221
 7.1 Overview .. 221
 7.2 LDL-C-Lowering Drugs for Statin-Intolerant and Statin-Refractory Patients 222
 7.2.1 Unmet Need ... 222
 7.2.2 Gap Analysis ... 223
 7.2.3 Opportunity .. 224
 7.3 Improved Diagnosis, Patient Education, and Long-term Compliance 225
 7.3.1 Unmet Need ... 225
 7.3.2 Gap Analysis ... 226
 7.3.3 Opportunity .. 228
 7.4 Therapies that Prevent or Reverse the Build-Up of Atherosclerotic Plaque 229
 7.4.1 Unmet Need ... 229
 7.4.2 Gap Analysis ... 230
 7.4.3 Opportunity .. 231
 7.5 Therapies for Patients with HoFH with Improved Side Effect Profiles 232
 7.5.1 Unmet Need ... 232
 7.5.2 Gap Analysis ... 233
 7.5.3 Opportunity .. 234

8 Pipeline Assessment ... 235
Table of Contents

8.1 Overview .. 235

8.2 Clinical Trial Mapping .. 239
 8.2.1 Clinical Trials by Patient Population ... 239

8.3 Promising Drugs in Clinical Development ... 239
 8.3.1 Alirocumab ... 239
 8.3.2 Bococizumab ... 248
 8.3.3 Evolocumab ... 253
 8.3.4 Anacetrapib .. 262
 8.3.5 Evacetrapib .. 270
 8.3.6 TA-8995 (DEZ-001) ... 276
 8.3.7 CER-001 .. 282
 8.3.8 ETC-1002 .. 288

8.4 Other Drugs in Development ... 296

9 Current and Future Players ... 297
 9.1 Overview ... 297
 9.2 Trends in Corporate Strategy .. 302
 9.3 Company Profiles ... 304
 9.3.1 AbbVie .. 304
 9.3.2 Aegerion Pharmaceuticals, Inc. ... 306
 9.3.3 Amarin .. 308
 9.3.4 Amgen .. 310
 9.3.5 AstraZeneca ... 312
 9.3.6 Cerenis Therapeutics Inc. .. 315
<table>
<thead>
<tr>
<th>Section</th>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.7</td>
<td>Daiichi Sankyo</td>
<td>317</td>
</tr>
<tr>
<td>9.3.8</td>
<td>Dezima Pharma</td>
<td>319</td>
</tr>
<tr>
<td>9.3.9</td>
<td>Eli Lilly</td>
<td>321</td>
</tr>
<tr>
<td>9.3.10</td>
<td>Esperion Therapeutics, Inc.</td>
<td>324</td>
</tr>
<tr>
<td>9.3.11</td>
<td>Genzyme</td>
<td>326</td>
</tr>
<tr>
<td>9.3.12</td>
<td>GlaxoSmithKline</td>
<td>328</td>
</tr>
<tr>
<td>9.3.13</td>
<td>Merck & Co.</td>
<td>330</td>
</tr>
<tr>
<td>9.3.14</td>
<td>Pfizer</td>
<td>333</td>
</tr>
<tr>
<td>9.3.15</td>
<td>Regeneron Pharmaceuticals, Inc.</td>
<td>335</td>
</tr>
<tr>
<td>9.3.16</td>
<td>Sanofi</td>
<td>337</td>
</tr>
<tr>
<td>10</td>
<td>Market Outlook</td>
<td>341</td>
</tr>
<tr>
<td>10.1</td>
<td>Global Markets</td>
<td>341</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Forecast</td>
<td>341</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Drivers and Barriers – Global Issues</td>
<td>350</td>
</tr>
<tr>
<td>10.2</td>
<td>United States</td>
<td>353</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Forecast</td>
<td>353</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Key Events</td>
<td>358</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Drivers and Barriers</td>
<td>359</td>
</tr>
<tr>
<td>10.3</td>
<td>5EU</td>
<td>361</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Forecast</td>
<td>361</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Key Events</td>
<td>369</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Drivers and Barriers</td>
<td>370</td>
</tr>
<tr>
<td>10.4</td>
<td>Japan</td>
<td>373</td>
</tr>
</tbody>
</table>
Table of Contents

10.4.1 Forecast .. 373
10.4.2 Key Events .. 376
10.4.3 Drivers and Barriers .. 377

10.5 China .. 379
10.5.1 Forecast .. 379
10.5.2 Key Events .. 383
10.5.3 Drivers and Barriers .. 383

11 Appendix ... 386
11.1 Bibliography .. 386
11.2 Abbreviations .. 414
11.3 Methodology ... 422
11.4 Forecasting Methodology .. 422
 11.4.1 Diagnosed Dyslipidemia Patients .. 422
 11.4.2 Percent Drug-Treated Patients .. 423
 11.4.3 Drugs Included in Each Therapeutic Class ... 423
 11.4.4 Launch and Patent Expiry Dates ... 424
 11.4.5 General Pricing Assumptions ... 425
 11.4.6 Individual Drug Assumptions ... 426
 11.4.7 Generic Erosion ... 433
 11.4.8 Pricing of Pipeline Agents .. 433
11.5 Physicians and Specialists Included in this Study ... 435
11.6 About the Authors .. 437
 11.6.1 Analyst .. 437
Table of Contents

11.6.2 Therapy Area Director ... 437
11.6.3 Epidemiologist .. 438
11.6.4 Global Head of Healthcare ... 438
11.7 About GlobalData .. 439
11.8 Disclaimer .. 439
1.1 List of Tables

Table 1: Dyslipidemia: Key Metrics in Eight Major Pharmaceutical Markets .. 31
Table 2: Common Secondary Causes of Dyslipidemia ... 33
Table 3: Risk Factors and Comorbidities for Dyslipidemia .. 39
Table 4: Overview of the Total Prevalence of Low HDL-C in the 5EU .. 42
Table 5: NCEP ATP III Classification of LDL-C, TG, and HDL-C .. 44
Table 6: Simon Broome Diagnostic Criteria for FH .. 45
Table 7: LDL-C Based Definition of FH .. 45
Table 8: Sources of Total Prevalence Data for FH in the 8MM .. 46
Table 9: Sources of Total Prevalence Data for Increased LDL-C in the 8MM ... 47
Table 10: Sources of Total Prevalence Data for High TG (≥200mg/dL) in the 8MM 48
Table 11: Sources of Total Prevalence Data for Very High TG (≥500mg/dL) in the 8MM 49
Table 12: Sources of Total Prevalence Data for Low HDL-C in the 8MM ... 50
Table 13: 8MM, Sources Not Used in the Epidemiological Analysis of Dyslipidemia 83
Table 14: 8MM, Total Prevalent Cases of Dyslipidemia, Both Sexes, Ages ≥20 Years, N, 2013–2023 84
Table 15: 8MM, Age-Specific Total Prevalent Cases of Dyslipidemia, Both Sexes, N (Row %), 2013 86
Table 16: 8MM, Sex-Specific Total Prevalent Cases of Dyslipidemia, Ages ≥20 Years, N (Row %), 2013 88
Table 17: 8MM, Total Prevalent Cases of Familial Hypercholesterolemia, Both Sexes, Ages ≥20 Years, N, 2013–2023 ... 90
Table 18: 8MM, Total Prevalent Cases of Increased LDL-C* (≥115mg/dL to ≥160mg/dL), Both Sexes, Ages ≥20 Years, N, 2013–2023 ... 92
Table 19: 8MM, Age-Specific Total Prevalent Cases of Increased LDL-C* (≥115mg/dL to ≥160mg/dL), Both Sexes, N (Row %), 2013 ... 94
Table 20: 8MM, Sex-Specific Total Prevalent Cases of Increased LDL-C* (≥115mg/dL to ≥160mg/dL), Ages ≥20 Years, N (Row %), 2013 ... 96
Table of Contents

Table 21: 8MM, Total Prevalent Cases of Very High TG (≥500mg/dL), Both Sexes, Ages ≥20 Years, N, 2013–2023 .. 99
Table 22: 8MM, Age-Specific Total Prevalent Cases of Very High TG (≥500mg/dL), Both Sexes, N (Row %), 2013 .. 101
Table 23: 8MM, Sex-Specific Total Prevalent Cases of Very High TG (≥500mg/dL), Ages ≥20 Years, N (Row %), 2013 .. 103
Table 24: Treatment Guidelines for Dyslipidemia ... 111
Table 25: Most Commonly Prescribed Drugs for Dyslipidemia by Class in the Global Markets, 2014113
Table 26: Country Profile – US .. 118
Table 27: Country Profile – France ... 121
Table 28: Country Profile – Germany ... 124
Table 29: Country Profile – Italy .. 126
Table 30: Country Profile – Spain .. 128
Table 31: Country Profile – UK .. 130
Table 32: Country Profile – Japan ... 133
Table 33: Country Profile – China ... 135
Table 34: Leading Treatments for Dyslipidemia, 2014 ... 140
Table 35: Statin Combination Therapies .. 142
Table 36: Product Profile – Lipitor ... 143
Table 37: Lipitor (atorvastatin) SWOT Analysis, 2014 .. 145
Table 38: Global Sales Forecasts ($m) for Lipitor (atorvastatin), 2013–2023 .. 146
Table 39: Product Profile – Crestor (rosuvastatin) ... 148
Table 40: Crestor (rosuvastatin) SWOT Analysis, 2014 ... 150
Table 41: Global Sales Forecasts ($m) for Crestor (rosuvastatin), 2013–2023 .. 151
Table 42: Product Profile – Zocor (simvastatin) ... 152
Table of Contents

Table 43: Zocor (simvastatin) SWOT Analysis, 2014 .. 154
Table 44: Global Sales Forecasts ($m) for Zocor (simvastatin), 2013–2023 155
Table 45: Product Profile – Livalo (pitavastatin) .. 156
Table 46: Livalo (pitavastatin) SWOT Analysis, 2014 .. 159
Table 47: Product Profile – Zetia (ezetimibe) .. 162
Table 48: Zetia (ezetimibe) SWOT Analysis, 2014 .. 168
Table 49: Global Sales Forecasts ($m) for Zetia (ezetimibe), 2013–2023 169
Table 50: Product Profile – Vitorin (simvastatin/ezetimibe) .. 170
Table 51: Vitorin (simvastatin/ezetimibe) SWOT Analysis, 2014 172
Table 52: Global Sales Forecasts ($m) for Vitorin (simvastatin/ezetimibe), 2013–2023 173
Table 53: Product Profile – Liptruzet (atorvastatin/ezetimibe) .. 174
Table 54: Liptruzet (atorvastatin/ezetimibe) SWOT Analysis, 2014 176
Table 55: Global Sales Forecasts ($m) for Liptruzet (atorvastatin/ezetimibe), 2013–2023 .. 177
Table 56: Product Profile – Niaspan (niacin extended-release) .. 179
Table 57: Niaspan (niacin extended-release) SWOT Analysis, 2014 182
Table 58: Global Sales Forecasts ($m) for Niaspan (niacin extended-release), 2013–2023 183
Table 59: Product Profile – Kynamro (mipomersen sodium) ... 185
Table 60: Kynamro-Induced Changes in Lipid Parameters from Akdim et al., 2010 186
Table 61: Kynamro-Induced Changes in Lipid Parameters from Raal et al., 2010 187
Table 62: Kynamro (mipomersen) SWOT Analysis, 2014 .. 188
Table 63: Global Sales Forecasts ($m) for Kynamro (mipomersen), 2013–2023 189
Table 64: Product Profile – Juxtapid (lomitapide) ... 191
Table 65: Juxtapid-Induced Dose-Responsive Changes in Lipid Parameters from Cuchel et al., 2007 192
Table 66: Juxtapid-Induced Changes in Lipid Parameters from Cuchel et al., 2013 193
Table 67: Juxtapid (lomitapide) SWOT Analysis, 2014 ... 194
Table 68: Global Sales Forecasts ($m) for Juxtapid (lomitapide), 2013–2023 195
Table 69: A Summary of the Therapeutic Properties of Fibrates* .. 196
Table 70: Product Profile – TriCor (fenofibrate) and Trilipix (fenofibric acid)................................. 197
Table 71: TriCor/Trilipix (fenofibrate/fenofibric acid) SWOT Analysis, 2014 199
Table 72: Global Sales Forecasts ($m) for TriCor/Trilipix (fenofibrate/fenofibric acid), 2013–2023 200
Table 73: Product Profile – Lovaza (omega-3 acid ethyl esters) ... 202
Table 74: Lovaza (omega-3 acid ethyl esters) SWOT Analysis, 2014 .. 204
Table 75: Global Sales Forecasts ($m) for Lovaza (omega-3 acid ethyl esters), 2013–2023 205
Table 76: Product Profile – Vascepa (icosapent ethyl) ... 207
Table 77: Vascepa (icosapent ethyl) SWOT Analysis, 2014 .. 209
Table 78: Global Sales Forecasts ($m) for Vascepa (icosapent ethyl), 2013–2023 210
Table 79: Product Profile – Epanova (omega-3 carboxylic acids) .. 211
Table 80: Epanova-Induced Changes in Blood Lipid Parameters from Kastelein et al., 2012 213
Table 81: Epanova-Induced Changes in Blood Lipid Parameters from Maki et al., 2013 213
Table 82: Epanova (omega-3 carboxylic acids) SWOT Analysis, 2014 ... 214
Table 83: Global Sales Forecasts ($m) for Epanova (omega-3 carboxylic acids), 2013–2023 215
Table 84: Product Profile – Welchol (colesevelam HCl) ... 217
Table 85: Welchol-Induced Changes in Blood Glucose and Lipid Parameters from Zieve et al., 2007 .. 218
Table 86: Welchol (colesevelam HCl) SWOT Analysis, 2014 .. 219
Table 87: Global Sales Forecasts ($m) for Welchol (colesevelam HCl), 2013–2023 220
Table 88: Unmet Need and Opportunity in Dyslipidemia ... 222
Table 89: Comparison of Therapeutic Classes in Development for Dyslipidemia, 2014 238
Table 90: Product Profile – Alirocumab ... 242
Table of Contents

Table 91: Alirocumab SWOT Analysis, 2014 ... 247
Table 92: Global Sales Forecasts ($m) for Alirocumab, 2013–2023 248
Table 93: Product Profile – Bococizumab ... 249
Table 94: Bococizumab SWOT Analysis, 2014 ... 252
Table 95: Global Sales Forecasts ($m) for Bococizumab, 2013–2023 253
Table 96: Product Profile – Evolocumab ... 255
Table 97: Phase III Clinical Trials of Evolocumab Reported by Amgen from Q4 2013 – Q1 2014 ... 257
Table 98: Evolocumab SWOT Analysis, 2014 ... 261
Table 99: Global Sales Forecasts ($) for Evolocumab, 2013–2023 262
Table 100: Product Profile – Anacetrapib ... 264
Table 101: Anacetrapib SWOT Analysis, 2014 ... 268
Table 102: Global Sales Forecasts ($) for Anacetrapib, 2013–2023 269
Table 103: Product Profile – Evacetrapib ... 271
Table 104: Evacetrapib SWOT Analysis, 2014 ... 275
Table 105: Global Sales Forecasts ($) for Evacetrapib, 2013–2023 276
Table 106: Product Profile – TA-8995 (DEZ-001) .. 277
Table 107: Impact of Steady-State TA-8995 on CETP and Lipid Parameters from Ford et al., 2014 ... 278
Table 108: TA-8995 SWOT Analysis, 2014 ... 281
Table 109: Global Sales Forecasts ($) for TA-8995, 2013–2023 282
Table 110: Product Profile – CER-001 ... 284
Table 111: CER-001 SWOT Analysis, 2014 ... 287
Table 112: Global Sales Forecasts ($) for CER-001, 2013–2023 288
Table 113: Product Profile – ETC-1002 ... 290
Table 114: ETC-1002/Ezetimibe Active Comparator Trial Results 292
Table of Contents

Table 115: ETC-1002 SWOT Analysis, 2014 ... 294
Table 116: Global Sales Forecasts ($) for ETC-1002, 2013–2023 .. 295
Table 117: Dyslipidemia Drugs in Development, 2014 ... 296
Table 118: Key Companies in the Dyslipidemia Market in the 8MM, 2014 300
Table 119: AbbVie’s Dyslipidemia Portfolio Assessment, 2014 305
Table 120: Aegerion’s Dyslipidemia Portfolio Assessment, 2014 307
Table 121: Amarin’s Dyslipidemia Portfolio Assessment, 2014 309
Table 122: Amgen’s Dyslipidemia Portfolio Assessment, 2014 311
Table 123: AstraZeneca’s Dyslipidemia Portfolio Assessment, 2014 314
Table 124: Cerenis’ Dyslipidemia Portfolio Assessment, 2014 316
Table 125: Daiichi Sankyo’s Dyslipidemia Portfolio Assessment, 2014 318
Table 126: Dezima’s Dyslipidemia Portfolio Assessment, 2014 320
Table 127: Eli Lilly’s Dyslipidemia Portfolio Assessment, 2014 322
Table 128: Esperion’s Dyslipidemia Portfolio Assessment, 2014 325
Table 129: Genzyme’s Dyslipidemia Portfolio Assessment, 2014 327
Table 130: GlaxoSmithKline’s Dyslipidemia Portfolio Assessment, 2014 329
Table 131: Merck’s Dyslipidemia Portfolio Assessment, 2014 .. 332
Table 132: Pfizer’s Dyslipidemia Portfolio Assessment, 2014 .. 334
Table 133: Regeneron’s Dyslipidemia Portfolio Assessment, 2014 336
Table 134: Sanofi’s Dyslipidemia Portfolio Assessment, 2014 .. 339
Table 135: Global Sales Forecasts ($m) for Dyslipidemia, 2013–2023 344
Table 136: Dyslipidemia Market – Drivers and Barriers, 2014 ... 350
Table 137: Sales Forecasts ($) for Dyslipidemia in the United States, 2013–2023 355
Table 138: Key Events Impacting Sales for Dyslipidemia in the US, 2014 358
Table of Contents

Table 139: Dyslipidemia Market – US Drivers and Barriers, 2014...359
Table 140: Sales Forecast ($m) for Dyslipidemia in the 5EU, 2013–2023..362
Table 141: Key Events Impacting Sales for Dyslipidemia in the 5EU, 2014 ...369
Table 142: Dyslipidemia Market – 5EU Drivers and Barriers, 2014..370
Table 143: National Healthcare Authorities in the 5EU Nations ..370
Table 144: National Public Health Initiatives in the 5EU Nations..371
Table 145: Governmental Drug Pricing Authorities in the 5EU Nations ...372
Table 146: Sales Forecasts ($) for Dyslipidemia in Japan, 2013–2023 ..374
Table 147: Key Events Impacting Sales for Dyslipidemia in Japan, 2014 ...376
Table 148: Dyslipidemia Market – Japan Drivers and Barriers, 2014 ...377
Table 149: Sales Forecasts ($) for Dyslipidemia in China, 2013–2023 ...380
Table 150: Key Events Impacting Sales for Dyslipidemia in China, 2014 ..383
Table 151: Dyslipidemia Market – China Drivers and Barriers, 2014 ...383
Table 152: Key Launch Dates ...424
Table 153: Key Patent Expiries ..424
Table 154: High-Prescribing Physicians (Non-KOLs) Surveyed, by Country ..436
Table of Contents

1.2 List of Figures

Figure 1: 8MM, Total Prevalent Cases of Dyslipidemia, Both Sexes, Ages ≥20 Years, N, 2013–202385
Figure 2: 8MM, Age-Specific Total Prevalent Cases of Dyslipidemia, Both Sexes, Ages ≥20 Years, N, 201387
Figure 3: 8MM, Sex-Specific Total Prevalent Cases of Dyslipidemia, Ages ≥20 Years, N, 201388
Figure 4: 8MM, Age-Standardized Total Prevalence of Dyslipidemia (%), Ages ≥20 Years, by Sex, 2013 ...89
Figure 5: 8MM, Total Prevalent Cases of Familial Hypercholesterolemia, Both Sexes, Ages ≥20 Years, N, 2013–2023 ...91
Figure 6: 8MM, Total Prevalent Cases of Increased LDL-C* (≥115mg/dL to ≥160mg/dL), Both Sexes, Ages ≥20 Years, N, 2013–2023 ..93
Figure 7: 8MM, Age-Specific Total Prevalent Cases of Increased LDL-C* (≥115mg/dL to ≥160mg/dL), Both Sexes, Ages ≥20 Years, N, 2013 ..95
Figure 8: 8MM, Sex-Specific Total Prevalent Cases of Increased LDL-C* (≥115mg/dL to ≥160mg/dL), Ages ≥20 Years, N, 2013 ..97
Figure 9: 8MM, Age-Standardized Total Prevalence of Increased LDL-C (≥115mg/dL to ≥160mg/dL)* (%), Ages ≥20 Years, by Sex, 2013 ...98
Figure 10: 8MM, Total Prevalent Cases of Very High TG (≥500mg/dL), Both Sexes, Ages ≥20 Years, N, 2013–2023 ..100
Figure 11: 8MM, Age-Specific Total Prevalent Cases of Very High TG (≥500mg/dL), Both Sexes, Ages ≥20 Years, N, 2013 ..102
Figure 12: 8MM, Sex-Specific Total Prevalent Cases of Very High TG (≥500mg/dL), Ages ≥20 Years, N, 2013 ..103
Figure 13: 8MM, Age-Standardized Total Prevalence of Very High TG (≥500mg/dL) (%) , Ages ≥20 Years, by Sex, 2013 ..104
Figure 14: Competitive Assessment of Late-Stage Pipeline Agents in Dyslipidemia, 2013–2023238
Figure 15: Dyslipidemia Therapeutics – Clinical Trials by Indication and Lipid Biomarker, 2014239
Figure 16: Global Sales of Branded Products for Dyslipidemia by Company, 2013–2023301
Figure 17: Company Portfolio Gap Analysis in Dyslipidemia, 2013–2023 ..302
Table of Contents

Figure 18: Global Sales for Dyslipidemia by Country, 2013–2023 ... 346
Figure 19: Global Sales for Dyslipidemia by Drug Class, 2013–2023 .. 347
Figure 20: Global Sales Forecast for PCSK9 mAbs, 2015–2023 .. 348
Figure 21: Projected Global Sales of Dyslipidemia Drugs by Year, 2013–2023 .. 349
Figure 22: Sales for Dyslipidemia in the United States by Drug Class, 2013–2023 .. 357
Figure 23: Composite Sales for Dyslipidemia in the 5EU by Drug Class, 2013–2023 ... 364
Figure 24: Sales Breakdown for the 5EU Markets, 2013–2023 ... 365
Figure 25: 5EU Country Sales, Segmented by Drug Class, 2013–2023 .. 366
Figure 26: High-Selling* Drug Classes in the 5EU, Segmented by Country, 2013–2023 367
Figure 27: Low-Selling* Drug Classes in the 5EU, Segmented by Country, 2013–2023 368
Figure 28: Sales for Dyslipidemia in Japan by Drug Class, 2013–2023 .. 375
Figure 29: Sales for Dyslipidemia in China by Drug Class, 2013–2023 .. 382
Dyslipidemia is a generalized term that encompasses a wide range of metabolic lipid disorders that affects a staggeringly large number of people worldwide. For example, it is thought that roughly one-third of all citizens in the United States suffer from some form of dyslipidemia. Commonly, dyslipidemia is associated with elevated blood levels of atherogenic low-density lipoprotein cholesterol (LDL-C), but dyslipidemia also encompasses pathogenic levels of high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs), and a host of genetic disorders related to lipid processing and biosynthesis. The unifying theme behind all of these morbidities is their link to cardiovascular disease (CVD), including life threatening conditions such as acute coronary syndrome (ACS), stroke, and even cardiovascular (CV) death. The link between CVD and dyslipidemia is most readily seen in the slow but dangerous development of atherosclerotic cardiovascular disease (ASCVD), which refers to the buildup of atherosclerotic plaques that, in the worst case, can precipitate the aforementioned acute thrombotic CV events. Furthermore, dyslipidemias are a defining feature of major chronic diseases such as type 2 diabetes (T2D), metabolic syndrome, and obesity. Despite the plethora of current lipid-modulating therapies, the rates of CV morbidity and mortality remain the single largest cause of death worldwide. As the world’s population continues to grow, age, and become increasingly “westernized,” the prevalence of dyslipidemia is expected to rise, thereby necessitating more effective, safe, and specialized drug therapies to, at best, keep the disease in check.

In this report and forecast, the dyslipidemia market is analyzed over the course of a ten year period, from 2013–2023 in eight major pharmaceutical markets (8MM) (US, France, Germany, Italy, Spain, UK, Japan, and China). The drivers and barriers of the past and present dyslipidemia market are explored in depth as a means to set the stage for an analysis of the 10-year forecast. The role and prospects of both marketed and pipeline therapies will be analyzed, and GlobalData’s primary research will shed light on current physician insight into this large and lucrative market. The following key questions will be answered:
Introduction

- How will major clinical trials of currently marketed therapies impact the future of the dyslipidemia market? Particular attention will be given to the HPS2-THRIVE (Heart Protection Study 2 – Treatment of HDL to Reduce the Incidence of Vascular Events) and IMPROVE-IT (IMProved Reduction of Outcomes: Vytorin Efficacy International Trial) Phase III studies.

- What role will statins play in the future of the dyslipidemia market?

- How will Merck’s Zetia (ezetimibe) fit into the dyslipidemia treatment paradigm following the positive results of the ground-breaking IMPROVE-IT study?

- What are the clinical, regulatory, and commercial prospects of the proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies (mAbs) from Amgen, Sanofi/Regeneron, and Pfizer?

- What are the clinical, regulatory, and commercial prospects of the cholesteryl ester transfer protein (CETP) inhibitors from the established players, Eli Lilly and Merck, and from the industry newcomer, Dezima Pharma?

- How will novel lipid-modulating agents, such as Esperion Therapeutics’ ETC-1002 and Cerenis Therapeutics’ CER-001, impact the dynamics of the dyslipidemia market?

- What are the key market drivers, barriers, and unmet needs that remain unaddressed by currently marketed therapies? What will remain unaddressed by the current dyslipidemia pipeline?

2.2 Related Reports

- GlobalData (2014). Type 2 Diabetes – Global Drug Forecast and Market Analysis to 2022, January 2014, PHARMADPP37964

Introduction

- GlobalData (2013). Obesity – Global Drug Forecast and Market Analysis to 2022, October 2013, PHARMADPP36385
- GlobalData (2013). Chronic Heart Failure – Global Drug Forecast and Market Analysis to 2022, June 2013, PHARMADPP34543

2.3 Upcoming Related Reports

11.7 About GlobalData

GlobalData is a leading global provider of business intelligence in the healthcare industry. GlobalData provides its clients with up-to-date information and analysis on the latest developments in drug research, disease analysis, and clinical research and development. Our integrated business intelligence solutions include a range of interactive online databases, analytical tools, reports, and forecasts. Our analysis is supported by a 24/7 client support and analyst team.

GlobalData has offices in New York, San Francisco, Boston, London, India, Korea, Japan, Singapore, and Australia.

11.8 Disclaimer

All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher, GlobalData.