ACUTE CORONARY SYNDROME (ACS) - EPIDEMIOLOGY FORECAST TO 2023
Executive Summary

Acute coronary syndrome (ACS) is a serious cardiovascular disease associated with high healthcare costs, frequent recurrences and hospitalizations, and high risks of sudden death and short-term mortality. The ACS incidence increases with age and will be a significant public health problem as the elderly population increases around the world. ACS is classified into three disease entities based on evidence of heart muscle damage inferred from a person’s symptoms, changes in the ST-tracing of the electrocardiogram (ECG), and levels of cardiac biomarkers that signify heart muscle death: ST-elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI), and unstable angina (UA). These three disease entities differ in their clinical characteristics, treatment approaches, and survival probabilities.

This report provides an overview of the ACS risk factors and comorbidities, a discussion of the ACS global and historical trends, and a 10-year epidemiological patient forecast for ACS from 2013 to 2023 in the seven major markets (7MM) (US, France, Germany, Italy, Spain, UK, and Japan). The epidemiological patient forecast includes:

- Hospitalized incident cases of ACS, segmented by STEMI, NSTEMI, and UA
- ACS cases that survived until hospital discharge, segmented by STEMI, NSTEMI, and UA
- ACS cases that survived for one year post-hospital discharge, segmented by STEMI, NSTEMI, and UA
- Diagnosed prevalent cases of myocardial infarction (MI) segmented by STEMI and NSTEMI from 2013 to 2023 in the six major markets (6MM) (US, France, Germany, Italy, Spain, and UK)

The mentioned figure presents the forecast for the hospitalized incident ACS cases in the 7MM for men and women ages ≥25 years for 2013 and 2023. In the 7MM, the hospitalized incident cases of ACS will increase from 1.29 million cases in 2013 to 1.47 million cases in 2023 at the rate of 1.40% per year. The US constitutes around 40% of the total hospitalized incident ACS cases in the 7MM and will be the market with the highest number of cases during the forecast period. The majority of the cases occurred in men (58.15%) and in those ages ≥65 years (69.34%). For the 7MM, about 33% of the ACS cases were STEMI, 44% were NSTEMI, and 23% were UA. The proportions varied depending on the market.
Executive Summary

7MM, Hospitalized Incident Cases of ACS, Ages ≥25 Years, Both Sexes, N, 2013 and 2023

Sources: GlobalData; ASL Brescia, 2011; Cequier, 2008; Degano et al., 2013; Ferreira-Gonzalez et al., 2008; Floyd et al., 2009; ISS, 2010; Löwel et al., 2006; Marrugat et al., 2000; Marrugat et al., 2002; Marrugat et al., 2004; McManus et al., 2011b; Peretti et al., 2012; Smolina et al., 2012a; Smolina et al., 2012b
Table of Contents

1. **Table of Contents**
 - 1 Table of Contents ... 4
 - 1.1 List of Tables .. 7
 - 1.2 List of Figures ... 8

2. **Introduction** ... 10
 - 2.1 Catalyst ... 10
 - 2.2 Related Reports .. 10
 - 2.3 Upcoming Reports .. 11

3. **Epidemiology** .. 12
 - 3.1 Disease Background ... 12
 - 3.2 Risk Factors and Comorbidities .. 13
 - 3.2.1 Controlling hypertension can decrease the CHD incidence by 20–25%......................... 14
 - 3.2.2 Every 1% decrease in cholesterol levels is associated with a 2% decrease in the CHD risk ... 15
 - 3.2.3 Women who have diabetes have a higher risk of developing CHD than men with diabetes .. 16
 - 3.2.4 Cigarette smoking increases the risk of CHD and also increases the risk of developing other risk factors for CHD ... 17
 - 3.2.5 Obese and physically inactive persons are more likely to develop CHD through an increased risk of developing the traditional risk factors ... 17
 - 3.2.6 Non-modifiable risk factors, such as family history, age, and sex, contribute to CHD development... 18
 - 3.2.7 Comorbidities .. 18
 - 3.3 Global Trends – MI ... 19
 - 3.3.1 MI Incidence and Mortality Trends ... 19
 - 3.3.2 STEMI and NSTEMI Trends .. 29
 - 3.3.3 Trends in MI Mortality and Case-Fatality Rates ... 31
 - 3.3.4 MI Prevalence .. 33
Table of Contents

Table 17: 6MM, Diagnosed Prevalent Cases of MI, Ages ≥25 Years, Both Sexes, N (Col %), Select Years, 2013–2023 ... 80

Table 18: 6MM, Diagnosed Prevalent Cases of MI Segmented by STEMI and NSTEMI, Ages ≥25 Years, Both Sexes, N (Row %), 2013 ... 81

Table 19: 6MM, Age-Specific Diagnosed Prevalent Cases of MI, Both Sexes, N (Row %), 2013 .. 83

Table 20: 6MM, Sex-Specific Diagnosed Prevalent Cases of MI, Ages ≥25 Years, N (Row %), 2013 ... 84

Table 21: 7MM, Historical Data Validation ... 90

1.2 List of Figures

Figure 1: US, Temporal Trend in the Hospitalized MI Incidence from the Worcester Heart Attack Study, All Ages, 1975–2005 ... 21

Figure 2: UK, Age-Adjusted MI Incidence and Hospitalized Incidence (Cases per 100,000 Population), Men, 2002–2010 ... 26

Figure 3: UK, Age-Adjusted MI Incidence and Hospitalized Incidence (Cases per 100,000 Population), Women, 2002–2010 .. 27

Figure 4: England and Scotland, Age-Adjusted Temporal Trends in MI Mortality, Deaths per 100,000 Population, Men and Women, 2002–2010 .. 28

Figure 5: US, Germany, and UK, Crude Diagnosed MI Prevalence in Men and Women, 1990–2008 33

Figure 6: Global, Crude Total Population Prevalence Percentages of Angina Pectoris (%) 36

Figure 7: MI Forecast Case Flow Map .. 39

Figure 8: 7MM, Hospitalized Incident Cases of ACS, Ages ≥25 Years, Both Sexes, N, Select Years, 2013–2023 ... 68

Figure 9: 7MM, Age-Specific Hospitalized Incident Cases of ACS, Both Sexes, N, 2013 70

Figure 10: 7MM, Sex-Specific Hospitalized Incident Cases of ACS, Ages ≥25 Years, N, 2013 72

Figure 11: 7MM, Hospitalized Incident Cases of ACS Segmented by STEMI, NSTEMI, and UA, Ages ≥25 Years, Both Sexes, N, 2013 .. 74
Table of Contents

Figure 12: 7MM, Survival of Hospitalized Incident Cases of ACS, Ages ≥25 Years, Both Sexes, %, 2013.....75
Figure 13: 7MM, Age-Specific Survival of Hospitalized Incident Cases of ACS, Both Sexes, %, 2013.........77
Figure 14: 7MM, Age-Standardized Incidence of ACS (Cases per 100,000 Population), Ages ≥25 Years, 2013 ..79
Figure 15: 6MM, Diagnosed Prevalent Cases of MI, Ages ≥25 Years, Both Sexes, N, 2013–2023............80
Figure 16: 6MM, Diagnosed Prevalent Cases of MI Segmented by STEMI and NSTEMI, Ages ≥25 Years, Both Sexes, N, 2013 ...82
Figure 17: 6MM, Age-Specific Diagnosed Prevalent Cases of MI, Both Sexes, N, 2013.............................83
Figure 18: 6MM, Sex-Specific Diagnosed Prevalent Cases of MI, Ages ≥25 Years, N, 2013.....................85
Figure 19: 6MM, Age-Standardized Diagnosed Prevalence of MI, Ages ≥25 Years, %, 2013..................86
2 Introduction

2.1 Catalyst

Acute coronary syndrome (ACS) is a serious cardiovascular disease associated with high healthcare costs, frequent recurrences and hospitalizations, and high risks of sudden death and short-term mortality. The ACS incidence increases with age and will be a significant public health problem as the elderly population increases around the world. ACS is classified into three disease entities based on evidence of heart muscle damage inferred from a person’s symptoms, changes in the ST-tracing of the electrocardiogram (ECG), and levels of cardiac biomarkers that signify heart muscle death: ST-elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI), and unstable angina (UA). These three disease entities differ in their clinical characteristics, treatment approaches, and survival probabilities.

The epidemiology of ACS in the 7MM has changed significantly during the past two decades and varies between the western and Japanese markets. In order to capture the country-specific trends and provide detailed patient population segmentation, GlobalData epidemiologists built separate forecasts for (myocardial infarction) (MI) and UA in the 7MM and used a case-flow methodology to determine the number of cases that survived until hospital discharge and for one year after hospital discharge. Key results of the forecast are the following:

- In the 7MM, the hospitalized incident cases of ACS will increase from 1.29 million cases in 2013 to 1.47 million cases in 2023 at the rate of 1.40% per year.
- More ACS cases in the 7MM occurred in men (58.15%) than in women (41.85%).
- For the 7MM, about 33% of the ACS cases were STEMI, 44% were NSTEMI, and 23% were UA. The proportions varied depending on the market.
Introduction

2.3 Upcoming Reports

- GlobalData (2014). PharmaPoint: Acute Coronary Syndrome Global Drug Forecast and Market Analysis to 2023
Appendix

4.3 About GlobalData

GlobalData is a leading global provider of business intelligence in the healthcare industry. GlobalData provides its clients with up-to-date information and analysis on the latest developments in drug research, disease analysis, and clinical research and development. Our integrated business intelligence solutions include a range of interactive online databases, analytical tools, reports, and forecasts. Our analysis is supported by a 24/7 client support and analyst team.

GlobalData has offices in New York, San Francisco, Boston, London, India, Korea, Japan, Singapore, and Australia.

4.4 About EpiCast

EpiCast is a series of premier epidemiology reports written and developed by Master’s- and PhD-level epidemiologists.

EpiCast Reports

EpiCast Reports are in-depth, high-quality, transparent, and market-driven, providing expert analysis of epidemiological trends and forecasting of patient populations for major markets. Specifically, the reports identify disease trends over a 10-year forecast period in six to seven major markets (US, France, Germany, Italy, Spain, UK, and Japan). Additional countries, such as Canada, Brazil, China, and India, are covered in these reports if their markets are highly relevant.
4.5 Disclaimer

All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher, GlobalData. The facts of this report are believed to be correct at the time of publication, but cannot be guaranteed. Please note that the findings, conclusions, and recommendations that GlobalData delivers will be based on information gathered in good faith from both primary and secondary sources, whose accuracy we are not always in a position to guarantee. As such, GlobalData can accept no liability whatever for actions taken based on any information that may subsequently prove to be incorrect.