Market Research Logo

Artificial Intelligence in the Pharmaceutical Industry

Artificial Intelligence in the Pharmaceutical Industry

Introduction

Artificial Intelligence (AI) can positively disrupt many of pharma's business areas and processes. From smarter drug candidate identification and repurposing older products to faster clinical trial recruitment and improved clinician/patient education and support. But pharma remains dangerously behind the AI curve and advocates say the time is now for pharma to get on board with the investment and organisational changes that will see AI deliver real productivity gains

But before pharma can embrace this technology, it will need to make some big decisions on how it will implement AI, which vendors it should it work with, what data it needs and how will it use the results to drive quantitative decision making that is trusted. There is a lot of AI hype – but the real opportunities are identified in this compelling expert report.

Discover on this page…

Why this report is important to you

What the report will enable you to do

Detailed table of contents

Why this report is important to you

AI is coming of age and transforming many industrial sectors (think of the impact of driverless cars in the automotive industry). But many pharma companies have yet to fully embrace the latest AI technology/techniques or, worse, see AI as a critical capability for their organisation in the long term. But they need to. With costs rising and pressure on prices, pharma must be smarter about how it conducts its business — and AI might just be key in resolving the industry's many challenges. This report reveals the insights of AI experts who combine a deep knowledge of the pharma industry with a realistic and practical perspective on where the AI wins are for the industry now and in the future.

This report will enable you to…

Understand how AI can be used to streamline and improve the drug discovery process

Breathe new life into old products or failed late stage compounds by using AI to identify potential new indications

Apply AI for profiling patients to better identify clinical trial participant prospects

Appreciate the current AI and ML technology challenges and limitations and why trusting the ""black box"" is such a big issue

Use AI in the clinic to support HCPs and patients – could this be a boost to your ""beyond the pill"" support programmes?

Assess AI start-ups who are driving the AI service agenda to pharma, such as Atomwise, Benevolent Bio, Berg Health, Cloud Pharmaceuticals, Deep Genomics, EchoBox, Numerate, Seldon, twoXAR, WuXi and NextCODE

Expert Artificial Intelligence Contributors

The report is informed by the front-line knowledge of US/EU AI experts who work in leading innovator companies such as Cloud Pharmaceuticals, Benevolent Bio and Kadmon Group.

Table of Contents

Executive summary

Research objectives

Research Methodology

Experts interviewed

AI in pharma

Key insights

What is artificial intelligence and machine learning?

AI/ML technologies have been around since the 1950s so why the hype now?

Critical mass of data, exponential growth in computing power and cloud computing

Perceived benefits of AI by management

Accelerating the drug discovery process

No 'one size fits all' modality or solution

In house expertise versus external contractors

Application of AI by pharma

Key insights

AI applications across the whole of the pharma R&D and supply chain

Designing smarter drugs, quickly

Repurposing discarded drugs

Streamline clinical trials, design, recruitment and biomarker discovery

Enhance clinical decision making and patient engagement

Remote monitoring wearables and smart connected devices

Medication adherence and patient centricity

Market access

Competitive landscape

Key insights

Pharma impact

Pharma market activity in digital technologies and AI

Leading institutes in AI

Leading companies

Recent partnerships & collaborations

Key challenges for pharma to adopt AI drive approach

Key insights

Cultural change - new blood, new business strategies

Trusting the black box

Messy data - data curation and bias

Data sharing

Infrastructure and software challenges

How will AI affect the future of the pharma industry?

Accountability - social, ethical and legal issues

KOL Biographies

Figures & Tables

Table 1: How industries are using big data to transform their business models

Figure 1: Benefits of implementing AI According to Senior Executives Worldwide, June 2017 (% respondents)

Figure 2: AI impact across the whole of the pharma value chain

Figure 3: Exploit/explore HTS to optimise hit identify

Figure 4: Primary cause of failure for terminated compounds, 2000-2010 data pooled

Figure 5: Differences in the cause of failure during a) candidate nomination, , b) Phase I and c) Phase II development 2000-2010 data pooled

Table 2: Clinical stage rediscovered with recursion platform

Figure 6: How will AI impact the healthcare landscape

Figure 7: US venture capital funding for digital health products, 2011-2016 ($b)

Figure 8: US venture capital funding for digital health products - most funded categories, 2016 ($m)

Figure 9: AI investment in healthcare and wellness, Funding 2012-2016 (in $m)

Figure 10: Publications in AI research 2011-2015, by country

Table 3: Leading institution in AI research based on publications 2011-2016

Table 4: AI start-up companies

Figure 11: Expectations for AI adoption across industries: impact on offerings

About FirstWord

FirstWord is an innovative industry intelligence leader serving over 240,000 Pharma and MedTech professionals worldwide. FirstWord offers a range of products and services designed to help your company gain a competitive edge by making key business decisions with speed and confidence.

FirstWord Pharma PLUS is a personalised and comprehensive intelligence service delivering up-to-the-minute pharma news, insight, analysis and expert views of importance to your company’s success.

FirstWord Reports deliver timely, need-to-know intelligence about your products, your competitors and your markets. Covering biosimilars, market access, medical affairs, sales & marketing, technology and therapy areas, FirstWord Reports provide expert views and intelligence on the challenges facing pharma today.


1. Executive Summary
2. Research Objectives
3. Research Methodology
4. Experts interviewed
5. AI in pharma
5.1 Key insights
5.2 What is artificial intelligence and machine learning?
5.3 AI/ML technologies have been around since the 1950s so why the hype now?
5.4 Critical mass of data, exponential growth in computing power and cloud computing
5.5 Perceived benefits of AI by management
5.6 Accelerating the drug discovery process
5.7 No ‘one size fits all’ modality or solution
5.8 In house expertise versus external contractors
6. Application of AI by pharma
6.1 Key insights
6.2 AI applications across the whole of the pharma R&D and supply chain
6.3 Designing smarter drugs, quickly
6.4 Repurposing discarded drugs
6.5 Streamline clinical trials, design, recruitment and biomarker discovery
6.6 Enhance clinical decision making and patient engagement
6.7 Remote monitoring wearables and smart connected devices
6.8 Medication adherence and patient centricity
6.9 Market access
7. Competitive landscape
7.1 Key insights
7.2 Pharma impact
7.3 Pharma market activity in digital technologies and AI
7.4 Leading institutes in AI
7.5 Leading companies
7.6 Recent partnerships & collaborations
8. Key challenges for pharma to adopt AI drive approach
8.1 Key insights
8.2 Cultural change – new blood, new business strategies
8.3 Trusting the black box
8.4 Messy data – data curation and bias
8.5 Data sharing
8.6 Infrastructure and software challenges
8.7 How will AI affect the future of the pharma industry?
8.8 Accountability – social, ethical and legal issues
9. KOL Biographies

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook

Share this report