Market Research Logo

The 2011-2016 Outlook for Telecom CRM, E-Commerce, and Analytics in Africa

57 Pages Icon Group International, Inc. January 01, 2011 SKU: ICN6576224

This econometric study covers the outlook for telecom crm, e-commerce, and analytics in Africa. For each year reported, estimates are given for the latent demand, or potential industry earnings (P.I.E.), for the country in question (in millions of U.S. dollars), the percent share the country is of the region and of the globe. These comparative benchmarks allow the reader to quickly gauge a country vis-a-vis others. Using econometric models which project fundamental economic dynamics within each country and across countries, latent demand estimates are created. This report does not discuss the specific players in the market serving the latent demand, nor specific details at the product level. The study also does not consider short-term cyclicalities that might affect realized sales. The study, therefore, is strategic in nature, taking an aggregate and long-run view, irrespective of the players or products involved.

This study does not report actual sales data (which are simply unavailable, in a comparable or consistent manner in virtually all of the countries in Africa). This study gives, however, my estimates for the latent demand, or the P.I.E. for telecom crm, e-commerce, and analytics in Africa. It also shows how the P.I.E. is divided across the national markets of Africa. For each country, I also show my estimates of how the P.I.E. grows over time (positive or negative growth). In order to make these estimates, a multi-stage methodology was employed that is often taught in courses on international strategic planning at graduate schools of business.

WHAT IS LATENT DEMAND AND THE P.I.E.?

The concept of latent demand is rather subtle. The term latent typically refers to something that is dormant, not observable or not yet realized. Demand is the notion of an economic quantity that a target population or market requires under different assumptions of price, quality, and distribution, among other factors. Latent demand, therefore, is commonly defined by economists as the industry earnings of a market when that market becomes accessible and attractive to serve by competing firms. It is a measure, therefore, of potential industry earnings (P.I.E.) or total revenues (not profit) if a market is served in an efficient manner. It is typically expressed as the total revenues potentially extracted by firms. The "market" is defined at a given level in the value chain. There can be latent demand at the retail level, at the wholesale level, the manufacturing level, and the raw materials level (the P.I.E. of higher levels of the value chain being always smaller than the P.I.E. of levels at lower levels of the same value chain, assuming all levels maintain minimum profitability).

The latent demand for telecom crm, e-commerce, and analytics is not actual or historic sales. Nor is latent demand future sales. In fact, latent demand can be lower or higher than actual sales if a market is inefficient (i.e. not representative of relatively competitive levels). Inefficiencies arise from a number of factors, including the lack of international openness, cultural barriers to consumption, regulations, and cartel-like behavior on the part of firms. In general, however, latent demand is typically larger than actual sales in a country market.

For reasons discussed later, this report does not consider the notion of "unit quantities", only total latent revenues (i.e. a calculation of price times quantity is never made, though one is implied). The units used in this report are U.S. dollars not adjusted for inflation (i.e. the figures incorporate inflationary trends) and not adjusted for future dynamics in exchange rates. If inflation rates or exchange rates vary in a substantial way compared to recent experience, actually sales can also exceed latent demand (when expressed in U.S. dollars, not adjusted for inflation). On the other hand, latent demand can be typically higher than actual sales as there are often distribution inefficiencies that reduce actual sales below the level of latent demand.

As mentioned in the introduction, this study is strategic in nature, taking an aggregate and long-run view, irrespective of the players or products involved. If fact, all the current products or services on the market can cease to exist in their present form (i.e. at a brand-, R&D specification, or corporate-image level) and all the players can be replaced by other firms (i.e. via exits, entries, mergers, bankruptcies, etc.), and there will still be latent demand for telecom crm, e-commerce, and analytics in Africa at the aggregate level. Product and service offering details, and the actual identity of the players involved, while important for certain issues, are relatively unimportant for estimates of latent demand.

THE METHODOLOGY

In order to estimate the latent demand for telecom crm, e-commerce, and analytics in Africa, I used a multi-stage approach. Before applying the approach, one needs a basic theory from which such estimates are created. In this case, I heavily rely on the use of certain basic economic assumptions. In particular, there is an assumption governing the shape and type of aggregate latent demand functions. Latent demand functions relate the income of a country, city, state, household, or individual to realized consumption. Latent demand (often realized as consumption when an industry is efficient), at any level of the value chain, takes place if an equilibrium is realized. For firms to serve a market, they must perceive a latent demand and be able to serve that demand at a minimal return. The single most important variable determining consumption, assuming latent demand exists, is income (or other financial resources at higher levels of the value chain). Other factors that can pivot or shape demand curves include external or exogenous shocks (i.e. business cycles), and or changes in utility for the product in question.

Ignoring, for the moment, exogenous shocks and variations in utility across countries, the aggregate relation between income and consumption has been a central theme in economics. The figure below concisely summarizes one aspect of problem. In the 1930s, John Meynard Keynes conjectured that as incomes rise, the average propensity to consume would fall. The average propensity to consume is the level of consumption divided by the level of income, or the slope of the line from the origin to the consumption function. He estimated this relationship empirically and found it to be true in the short-run (mostly based on cross-sectional data). The higher the income, the lower the average propensity to consume. This type of consumption function is labeled "A" in the figure below (note the rather flat slope of the curve). In the 1940s, another macroeconomist, Simon Kuznets, estimated long-run consumption functions which indicated that the marginal propensity to consume was rather constant (using time series data across countries). This type of consumption function is show as "B" in the figure below (note the higher slope and zero-zero intercept). The average propensity to consume is constant.

Show Full Description


Show Table of Contents



The 2011-2016 Outlook for Telecom CRM, E-Commerce, and Analytics in Africa

Icon Group International, Inc.
January 01, 2011

Pricing & Delivery

Online Download
$325

Didn't find what you are looking for?

Let us find it for you. One of our knowledgeable research assistants will work with you to find exactly the right research to answer your questions:

US: 800.298.5699 International: +1.240.747.3093 Or leave us a message and we'll call you back!

Receive bi-weekly email alerts for new market research.



CTA Image

Download our free eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.


Download CTA

Share this report